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Introduction 2

Evolution equations of the quark and gluon distributions in the hadron, known as
DGLAP equations, derived in QED and QCD using the renormalization group or

diagrammatic techniques can be interpreted probabilistically as a Markovian process.
Such a process can be modeled using Monte Carlo methods.

The corresponding MC algorithm provides, in principle, an exact solution of the

evolution equations for parton distribution functions (PDFs).

In practice, the main limitation of a such solution is the size of a generated MC

sample, i.e. corresponding statistical errors of numerical results. This is probably the

main reason why this possibility has not been exploited until recently.

Instead, alternative numerical methods and programs solving the QCD evolution

equations much faster than the Markovian MC have been used.

Feasibility of solving efficiently the DGLAP equations at the leading-order (LO)
approximation with the Markovian MC was demonstrated for the first time in:
S. Jadach and M. Skrzypek, Acta Phys. Polon. B35, 745 (2004), hep-ph/0312355.
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Introduction 3

The main conclusion of the above work was that the currently available computer CPU
power allows to solve efficiently and precisely (at the per-mill level) the QCD evolution

equations with the use of the Markovian MC algorithm.
Of course, this method will always be slower in CPU time than non-MC techniques.

However, it has several advantages, such as: no biases and/or numerical instabilities
related to finite grids of points, use of quadratures, decomposition into finite series of
polynomials, accumulation of rounding errors, etc. It is also more flexible in treatment
of PDFs (e.g. no need to split them into singlet and non-singlet components) and

easier to extend into higher orders, new contributions, etc.

The above Markovian algorithm can be a basis for the final-state radiation (FSR)

parton shower MC program that not only solves numerically the evolution equations

but also generates events in terms of parton flavours and four-momenta.

Moreover, this algorithm is a starting point and a testing tool for various kinds of
constrained MC algorithms being developed for the initial-state radiation (ISR).

In this talk | present the Markovian MC solution of the DGLAP evolution equations up
to the next-to-leading order (NLO) in the perturbative QCD.
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QCD evolution equations 4

» The general form of the DGLAP evolution equations:

0
5 di = Z(PQin X q; + Pqiﬁj ®§j)—|- P,c®G

j
q; Z(quj ®qj + Pgq, ®7;) + Pr,c®G
j

G = ) (Pag, ®4j + Pog; ®7;) + Poc ®G

J

0
0 1n p?

0
0 1n p?
where {q1,...,qn;» Q1s--- vy G}, z) — quark, antiquark and gluon distributions;
x — Bjorken variable; u — hard scale, (e.g. u = 1/Q? in DIS).

> The integral convolution denoted by & involves only longitudinal momentum fractions:
1 1 1

(P ®q)(p, ) =/dy/dz5(£v—zy)P(as,z)Q(u,y) Z/%P(O%Z)Q(Mag) :

zZ
0 0 x

> The splitting functions P(asy, z) depend on w through the coupling constant vy = g (p):

2T

Plon,2) = 52 POG) + (22) PO ) + (52

gw

\ -

LO
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QCD evolution equations 5

> From charge conjugation and SU(nf) symmetry the splitting functions P have the following
general structure:

Pya; wg. = 0ij P + Py
= 6ijPgg + Py

Pra

Paq, Pog, = Por.

» This leads to the basic form of the DGLAP evolution equations:

Pp®a+Pareg +Pa®Y ¢ +Py®Y 4 + Pra®G
: _

J

Pr®aqgi+ Pu®q +Pr0Y ¢+ Pu®)Y G+ Pra®G
; .

J

Por ® Z(Qj +G,;) + Pec®G

J

> Within a given approximation some splitting functions may vanish or be equal, e.g.:

CpV(0) _ pSO) _ pSO) _ . pS() _ pSQ)
o: P = P2 = Pl =0, o PRt = POV
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QCD evolution equations 6

» Singlet case: n,

Z(/L,ZE) — Z [QJ(/L733) +§j(:u7x)}

j=1

> Introducing the notation

S S S V,S
Prp=P/ +nsP}, PP =Py” + P,

we obtain the following evolution equations for the quark-singlet and gluon distributions:

0
0 1n p?

0
G = Per®X 4+ Pog®G.
0 In p?

> The above splitting functions obey the general relations:
1 1

/dz{zPFF(u,z)+zPGF(u,z)} = /dz{anzppg(,u,z)+ngg(,u,z)} = 0.

2 Prr® X 4+ (2nyPrc) ® G

> This leads to the momentum sum rule:
1

/da: {xX(p,x) + xG(w,x)} = const (=1 in parton model)
0

W. Placzek Krakow—Hamburg Workshop, DESY, 25-26 October 2006



QCD evolution equations 7

» Non-singlet case:
nf
Z q] s L) — qj (M,ﬂf)} )

> The evolution equations for the non-smglet distribution:

0

V = Pve®@V
O1n p? Ns @V,

where the new splitting function:

PNs=PY +nsP° PV =p;5 — poo.

» The set of splitting functions (QCD kernels) usually represented in the literature:

{P{, P, Pra, Por, Pag}
Pf =0 atLO, P° =0 atLOandNLO, others= 0 atany order.

> Having the above splitting function one can write and solve the evolution equations
in any of the presented forms.

— In our Monte Carlo approach we work directly in the flavour space.
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Behaviouratz — 1

» The splitting functions { P}, P, Pgg} have the following form

Alas) %)
(1—2)+

> The functions A(c,), B(a) and P(a, 2) are calculated in powers of v, e.g.

Plawz) = 3 ab™ DY),
k=0

Plas,z) = + B(as)d(1 —2z) + P(as, 2),

where at NLO and NNLO the coefficients D(¥) () are logarithmically divergent:
D™ (2) = Dy In(1 —2) + O(1).

» Similarly, the splitting functions {Ppg, PGF} contain logarithmically divergent terms:

y

O(as) at LO (k = 0)
O(a?ln?(1 — 2)) at NLO (k = 1)
O(a? In*(1 — 2)) at NNLO (k = 2).

\

> This can lead to big positive or negative weights in Monte Carlo computations.
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QCD evolution equations 9

Behaviouratz — 0

» The splitting functions {Pf‘c/, P*E} are logarithmically divergent at z = 0 starting from NLO:

2k
Plas,2) = ) ol {Z D 'z + O )},
k=0 =1

» The remaining splitting functions {Pi, Pra, Par, Pag} have the following behaviour:

1 1
Plas,2) = Ei(as) % + Ba(as) - + O(In*z),

> The logarithmic term is present starting from the NLO (k = 1) approximation:
Ei(as) = o’ Eil) + ol Ef) + ...,
> while the 1/z term is present from the LO (k = 0) approximation:

Ea(as) = as Eéo) + a2 Eél) + ol E§2)....
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» The general parton—parton transition matrix for a gluon and three quark flavours (d, u, s):

QCD evolution equations

Pc ¢,

PG<—d7

PG<—J7

Pi—q,
Pu<—G,

PS<—G)

Py g4,
PU,(—d)

PS<—d)

Pd<—c{?

where Py = PJ<_I(OZS, z) At the NLO, the kernels can be decomposed:

PO (2) + (

> The NLO QCD coupling in the M S-scheme is

as(t) = o'V (¢) {1 — a9 () Z—; In (2[t — In Agpg )} ,

_ Do

47’

bo
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b1

Pcﬁ—G’
Pﬂ<—G7

P§<—G)

P(as,z) =

51
(4m)?”

Pcﬁ—d?
P’ﬁ<—d7
P§<—d)

as(t)

27

P§<—u,

2
50211—§

nf,

P§<—87

as(t)
27

Pg(—fby

)2 PU(2),

51:102—3—;nf,

t=InQ.

10
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QCD evolution equations 11

» The LO kernel matrix takes a simple form
i (0) (0)
Per, Pop
Pep, 0,
0, Pip,

Y

0
0, 0
0
0

0
, P 0
9 07 P}(T’OF)’

Pge(z) = 2Ca [

17 1104 — 4T
! }+ Ca— 4y

m—2+z(1—z)—|—;

(2) = Tr[z" + (1 — 2)7],

14 (1 —2)°
F
Z

1+ 22 3
(1—2)+ +§5(1_Z)}’

The colour-group factors are: Cy = N. = 3, Cp = (N2 —1)/2N. = 4/3, Tr = 1/2.

6 (1_Z)7

Y

P(z) = Cr |
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QCD evolution equations 12

» The NLO contribution to the kernel matrix is:

1 1 1
O o)

YASIONEIn) pE
pS@  pVEs(), pyrHs ()
PSS, pSM, pY+sm) | pS@) pE),

ACICESIO) pEm [ prHSm  ps
pSW_ pvEsM) pSQ) pS(M  pvEsm)

_ pEM), pSM prEs@ | ps) pS(M  pvEs

where PI(}]) = PI(}])(z) and we use a short-hand notation: PX]JFS M) = PX](D + PISJ(D.

> The non-singlet and singlet-quark kernels are given in terms of the basic NLO splitting

functions Py, P_ and Ppp:
1

V(1) _ (1) (1) vy _ oo (1) s _ 1 (1) (1)
Pyq _§{P+ +P—}7Pq@ _§{P+ _P—}quq _%[PFF_P-F}'
> All the elements of the above kernel matrix are calculated from the six basic NLO splitting
functions of Refs. G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175 (1980) 27
and W. Furmanski and R. Petronzio, Phys. Lett. B97 (1980) 437:

1 1 1 1 1 1
PV, P PL, PR, PG, PEL.
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Markovian Monte Carlo for parton-momentum distributions 13
® In our paper we have described a Markovian MC algorithm for parton distributions and we
have implemented it in the MC program.

e However, the factor 1/z in the bremsstrahlung kernels causes a significant loss of MC

efficiency!

e \We can get rid of this annoying phenomenon by switching to the a:D(:r;) which evolve with
the kernels z P(z).

e The reason for improvement is that kernels z P(z) fulfill the momentum sum rules.

» The evolution equations for zD(x) read

8txDKtx Z/? ZTKJtZ) %Dj(t,g).

> The kernels Px j(t,2) = 2Pk j(as(t), z) are splitinto virtual and real contributions:
Pr(t,z) = =P (t,e(t) dxs6(1 — 2) + PRs(t, ),
T?{J(ta Z) — ?Kj(ta Z) @(1 —Z E(t)) G)(Z o 6/)7

where € is an infra-red (IR) cut-off.
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Markovian Monte Carlo for parton-momentum distributions 14

» The iterative solution obtained from the above formulae reads:

xDK(t x>_6_‘1’K(”0)a}DK to, +Z /dajo Z H [/dt @ t; — ti_ 1 /dZZ]

anl

0
- (ti,Zi)eq)Ki—l(ti,ti—l)] xODKO (to,xo HZ’L

1=1
where K = K,,.

» The running a4 (t) can be absorbed into the evolution variable by the transformation:
t

B 1 p , ot B Ozs(tA)
b= as(tA)/dt onlt). 5 = Al

ta

> With the choice of o}’ )( t) in the definition of Tandt 4 =ty we get the iterative solution:
1

.’L'_DK(T QT) _ e—CIDK(T TO).’E.DK 7'0’ —|—Z /daj‘o Z H |:/de i — Ti—1 /dZZ:|

nlll

n

% e—CI)K(T,Tn) H

where PR .
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Markovian Monte Carlo for parton-momentum distributions 15

Construction of MC algorithm

» We simplify the QCD kernels:
as” (to)

p(0)
- 2P (2),

P?K(Ta Z) — ﬁ?K(To,Z) — @(1 —c E)
1
2P0 (2) = m&ﬁﬁ?}{ +6(1 — 2)0rx Bidk + F12(2).

> The approximate kernels do not depend on 7!

» The compensating weight is:

= PgiKi_l(TmZz‘)

1=

i=1 " K;K;_1 (TO’ Zl) |

» The probability of the forward Markovian leap:

o(1i, i, Kilmio1, i1, Ki 1) = O(1 — 1i1) Ple, , (o, @ifmi1) e Kima (T0Tim1),

o0 1

/ qu; /dzq;Z(I)(Ti,aji,Kq;|T7;_1,£IZi_1,K'_ )E 1, 2 :xi/a:i_l.

Ti—1 O Ki
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Markovian Monte Carlo for parton-momentum distributions 16

» The real-emission form factor is defined as follows

T (T3, Tiz1) /dT /dz ZP}K (70, 2

(0)
S 1
— (Ti—Ti_l)a ( ) [Aﬁg)ffl _‘I_

T €
— Ti—1 g 7k = (7i —Ti—1) RK.

» On the other hand, the exact virtual (Sudakov) form factor is

T (0)
Pr (7, 70) = / dr’ O‘jo)((to))
as ’(t

70

1

2 [AKK(T/) In - o

— BKK(T/):| :

> At LO, for the one-loop oz( ) and e(7) = € = const, it becomes simply

T €

(0)
s (t 1
D (7,70) = (T — 10) = (to) (A%{ In - — Bf,?;) .

> At NLO it is much more complicated, but can be integrated analytically
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Markovian Monte Carlo for parton-momentum distributions 17

» To complete the Markovianization, the integral over the “spill-over” variable 7,41 is added
with the help of the identity

o

1
—@ yI'n A r’'n 5
e  PEn (1) _ AR, (17 )/dTn—l—l / Z W(Trn41, Tnt1s Knt1|Tn, Tn, Kn)
0 n+1

T

where 2,411 = Tni+1/T, and
A (ti,mio1) = T (T, Tio1) — P (1i,751) = (1 — Tie1) R — ®xc (73, Ti—1).
» The advantage this method is that at the LO for € = € we obtain
Ax =0

due to the fact that the kernels obey the momentum sum rules.
—s This is also valid at the NLO in the M S scheme.

> In actual MC calculation AK can be non-zero due to simplifications in the QCD kernels

at the low MC generation level.
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Markovian Monte Carlo for parton-momentum distributions 18

» The final formula for this MC scenario with the importance sampling for the running a:

2Dk (1,1) = 2K (7:70) / dridz Z@(71,21£U,K1|7'0,£B,K) rDk (70, )

T1L>T K1

1
£ [dn [ dndaan Y > H / dridz
n=1 0

Ko,.. =

Tn+1>T Knt1 T,L<7'

X W(Tn41, Tnt1, Knt1|Tn, Tn, Kn) o(Ti, i, Kilmic1, i1, Ki—1)

n

X 5($ — X0 HZZ) :UQDKO (7’0,330) wp WA .
=1

Z; =
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Numerical tests 19

e \We have implemented the above Markovian MC algorithm up to NLO in the MC program
EvolFMC.

e Then, we have performed comparisons of the MC solution of the DGLAP with another
solution provided by the non-MC program QCDnum16 (M. Botje, ZEUS Note 97-066,
http://www.nikhef.nl/ h24/qgcdcode/).

® In both cases we have evolved singlet PDF for gluons and three doublets of massless quarks
from Qg = 1 GeVto () = 10,100, 1000 GeV.

» In our test, we have used the following parameterization of the starting parton distributions
in the proton at Qg = 1 GeV:

xDg(x
xD

1.9083594473 - 2 (1 — z)°°,
0.5 - CUDsea( )+xD2u(x)7

) =
) =
) = 0.5 - £Dgea () + 2Da(z),
) =
) =
)

q
xDg(x
0.6733449216 - 2z~ °*(1 — z)"°,
2.1875000000 - z°°(1 — 2)*°,

xDoy (x

xDg(x

(

(
T Dgea (T

(

(

= 1.2304687500 - 2°°(1 — 2)*°,
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Figure 1. The upper plot shows the quark distribution :L'Dq(:l:, QZ) evolved from (Qg = 1 GeV
(black) to (; = 10 (red), 100 (green) and 1000 (blue) GeV, obtained in the NLO approximation

from EvolFMC (solid lines) and QCDnum16 (dashed lines), while the lower plot shows their ratio.
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Figure 2: The upper plot shows the gluon distribution a:Dg(:I:, QZ) evolved from (g = 1 GeV
(black) to (; = 10 (red), 100 (green) and 1000 (blue) GeV, obtained in the NLO approximation

from EvolFMC (solid lines) and QCDnum16 (dashed lines), while the lower plot shows their ratio.
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Summary and outlook 22
We have constructed the Markovian Monte Carlo algorithm for solving the QCD DGLAP
evolution equations at the NLO.
We have implemented this algorithm in the MC program EvolFMC.

We have cross-checked EvolFMC with the non-MC programs QCDnum16 and APCheb33
(of K. Golec-Biernat) and found agreement at the per-mill level.

MC computation for the NLO evolution is ~ 5 times slower than for the LO evolution.

Singular behaviour of the NLO Pr¢ and Pg g splitting functions at z — 1 leads to large

positive weights for the ' — ( transitions and to negative weights for the G — F

transitions in the region of z > 0.95. — Resummation needed!

So far we have consider only massless quarks, however, including heavy quarks does not

pose any problem.
Also extension to the NNLO seems straightforward.

This algorithm can be also as the basis for constructing the FSR parton shower MC event

generator.

It can be also a testing tool for constrained MC algorithms for the ISR.
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