Propagation of
uncertainty in the Parton
Shower framework

Philip Stephens 2

IFJ-PAN, Krakow, Poland

4In collaboration with André van Hameren



Objective

= To quantify the effects of varying different
features of the parton shower

m Must leave delicate technical features of
original parton shower implementation
untouched

m Applicable to a general class of parton
shower implementations

= We wish to keep control of the variations of
perturbative physics through the whole event
simulation
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Method

We start with a general class of probabillity
distributions, written as a functional

Ple(@)] = Frle(y), B(Y)]

xexp (— [d"§Fylo(i), B(

Can vary according to
m Functionals, ¢(v)
m Boundaries on integrals, B(¥)



Method

If we vary this distribution according to some
vector Ap we find 1 + 22 is

Jexp (- [ @ 7aFVi(]).



Method

If one chooses

Flo(y) + Ap(y)] = F'le(y)],

then this method is equivalent to standard Monte
Carlo reweighting.
We now look at some examples

m Measurement uncertainty in ag
m Relaxing collinear approximation
m [nclusion of NLO kernel

m Changing kinematics
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Kinematics and
evolution

Use variables of Herwig++,
Z,QN % 4i1 q;

¢ = aup+ Gin+qu,

87
Zi = s Pli —q1; — 2iq1i;—1-
a1
2 ) 2
P2 = P K Q,
i T2 9
22(1—2)?* =z zi(1 — z)?
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Kinematics and
evolution

Using these variables we find the probability of
branching given by

C .
: dB(q — qg) = 2—71;045 (z2(1 — z)zqz) ?dquq(z, q°).
We now stick to the final state shower (for
simplicity) and find

Fl(@).7) = Folp(@). i) = g50s(:,8) Pl )

x0(z" = 2)0(z = 27)0(G; 1 — @),



Uncertainty in Strong
Coupling

For a first example we studied the effect of the
uncertainty of ag(M %) throughout the parton
shower.

m Used ag(M3Z) £ dag(M%) to compute
Agep = 5/\501)

m Used 2-loop running coupling

m Froze value of running coupling at Q? = 0.630
GeV?

m Assumed 10% uncertainty in measured
value, ag(M%) = 0.117



Running Coupling
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Running Coupling

N N

* Distribution of N, the number of emissions.



Running Coupling
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Quasi-Collinear
Approximation

The kernel in the quasi-collinear approximation Is

1+ 22 2m?
~9 L

If we define Ay to be the additional term, we can
compute the weight by

1

o5 (2 D) APy (2, ),

AF[(@Squq)(Zaéf)] =

and AF,, given by the additional term In the ker-

nel



uasi-Collinear
ernel
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uasi-Collinear
ernel
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NLO Kernel

We can also use this to compute the effect of the
NLO kernel. In this case we find

AF = o%(z, ) AP (2, ).

We fix Pq((?) — 0 and

2) (., 2y _ pS(2 V(2
APq(q)(z, q°) = qu( )(2) + qu( )(2).



NLO Kernel

Comparison of LO and NLO kernel for ¢ — gqg.
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NLO Kernel

Distribution of N, the number of emissions.



NLO Kernel
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Change of

We also want to change kinematics and evolution
ordering through the alternative weight

m Phase spaces of emissions are not identical
m Methods of reconstruction are not the same
m Orderings differ

m Infra-red cutoffs differ
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Pythia-like

We now turn to a Pythia-like shower. Evolution
variables are

2 2
Qi q@_ly
E;
2 — ,
Fi

It IS necessary to reconstruct 4-momenta through-
out evolution to find bounds on z, thus we must
reweight after the shower is complete.
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Pythia-like
Kinematics

We take advantage of the analytic behaviour of
the Sudakov form factor

At tg) = A(t, t1)A(t1, L),

and compute a Sudakov weight

( max. QO)
AH(Qmaxa QO) |

WA —

We must compute the cutoff Q7 as a function of



Pythia-like
Kinematics

We also have the weight for each real emission
as

o qu(zPi) @2 2 ‘
Ww; = qu(ZHi) Q@zj(Qz?ZP’L)

x0(Q;_1 — QF)0(zp — zpi)0(zpi — 2p),

where 7 Is the Jacobian factor for translating be-
tween the two sets of variables.




Kinematics
Transformation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ZH

Comparison of zp and zy.

P. Stephens, Cracow-Desy Meeting, Oct. 25th, 2006 — p.23/26



Kinematics
Transformation

Distribution of N, the number of emissions.
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Kinematics
transformation
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Conclusion

m Can control effect of perturbative QCD In
Monte Carlo

m Direct study of reweighted results vs. full
iImplementation can highlight physical
differences between methods

= Kinematics bounds
= Evolution ordering

m Could be used to direct research in regions
where Monte Carlo’s fail to match data
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