Small-*x* **Dipole Evolution Beyond the** Large- N_c Limit

Emil Avsar

In Collaboration with Gösta Gustafson and Leif Lönnblad

Department of Theoretical Physics,

Lund University, Sweden

Outline

- Parton and Dipole Cascades in QCD.
- Small-x Evolution With Dipoles:Mueller's Approach
- Improving Mueller's Dipole Model:
 - Energy-Momentum Conservation.
 - Colour Suppressed Effects.
- DIS at HERA.
- pp at the Tevatron.
- Summary and Conclusions.

Parton Cascades in e^+e^- **and DIS**

- In e^+e^- : $\sigma_{tot} \approx \sigma_0(1 + \frac{\alpha_s}{\pi})$. Fixed by low order matrix element.
- Parton cascade \rightarrow final state properties.
- In DIS both σ_{tot} and final state properties depend on parton cascade.
- If Q^2 and large $x \to DGLAP$ successful.
- Small-x evolution determined by BFKL eq. Gives σ_{tot} to LL and NLL accuracy.

Cascades in DIS

- Problems with BFKL: To LL, too steep rise of $\sigma \sim 1/x^{\lambda}$, $\lambda \sim 0.5$, also NLL very large.
- CCFM and LDC interpolate between BFKL and DGLAP. σ_{tot} ok but final state properties not fully successful.
- Higher energies at fixed resolution \rightarrow higher gluon density. Expect nonlinear effects due to gluon overlap.
- Nonlinear evolution: GLR, BK, JIMWLK.

From Gluons to Dipoles

- Alternative picture of cascade: Colour neutral dipoles.
- In transverse momentum space:
 - Soft Radiation Model implemented in ARIADNE gives best description of final states at HERA. Does not predict σ_{tot} .
- In transverse coordinate space:
 - Saturation easier to take into account.
 - GBW model. Includes saturation, σ_{tot} and diffraction ok.
 - Reformulation of BFKL to LL accuracy: The Mueller Dipole Model.

Mueller's Dipole Model

Decay probability given by

$$\frac{d\mathcal{P}}{dY} = \frac{\bar{\alpha_s}}{2\pi} \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} d^2 \boldsymbol{z}$$
$$\bar{\alpha_s} = \frac{\alpha_s N_c}{\pi}$$

Dipole Scattering

Dipoles scatter through one gluon exchange in inelastic amplitude.

Multiple Scatterings

- Single \mathbb{P} exchange: $\sum_{ij} f_{ij}$, gives BFKL.
- Multiple scatterings. Dipole interactions uncorrelated → Amplitude exponentiate: $T = 1 S = 1 \exp(-\sum_{ij} f_{ij})$.

$$\sigma_{tot} = 2 \int d^2 \boldsymbol{b} \langle 1 - \exp(-\sum_{ij} f_{ij}) \rangle.$$

Unitarity restored. Can be studied numerically in a MC, early simulations by Salam.

Dipoles and Pomerons:Evolution of \boldsymbol{S}

- Large- N_c B-JIMWLK hierarchy can be understood in terms of dipole evolution.
- If $Y \to Y + \Delta Y$ dipole can survive with prob: $1 \int \frac{d\mathcal{P}}{dY}$.

$$\partial_Y S_{\boldsymbol{x}\boldsymbol{y}} = \int_{\boldsymbol{z}} \frac{d\mathcal{P}}{dY} \{ -S_{\boldsymbol{x}\boldsymbol{y}} + S_{\boldsymbol{x}\boldsymbol{z};\boldsymbol{z}\boldsymbol{y}}^{(2)} \}$$

- Simple interpretation: Either survive, or evolve with prob. density $\frac{d\mathcal{P}}{dYd^2z}$.
- Evolution of pomerons: replace S by T = 1 S, scattering amplitude.

Dipoles and Pomerons: Evolution of T

If
$$T_{\boldsymbol{xz};\boldsymbol{zy}}^{(2)} = T_{\boldsymbol{xz}}T_{\boldsymbol{zy}} \Rightarrow \mathsf{BK}$$
 equation.

▶ Nonlinear term gives saturation as $T \rightarrow 1$.

Problems With the Dipole Model

•
$$\int \frac{d\mathcal{P}}{dY} = \infty$$
. Cut off, ρ , needed such that $(\boldsymbol{x} - \boldsymbol{z})^2, (\boldsymbol{z} - \boldsymbol{y})^2 \ge \rho^2$.

- Cancels against virtual emissions $\rightarrow \sigma_{tot}$ finite as $\rho \rightarrow 0$.
 Colour transparency.
- In numerical calculations $\rho ≠ 0$. Small ρ give very many dipoles → Inefficient simulation.
- Small dipole ⇒ well localized gluons: High $p_{\perp} \sim 1/r$.
- Identification $p_{\perp} \sim 1/r \Rightarrow$ Analogy with LDC and CCFM.

Energy-Momentum Conservation

- Divergent number of small dipoles & high $p_{\perp} \Rightarrow$ Violation of energy-momentum conservation.
- Cascade contains many virtual dipoles.
- EM Cons: Multiplicity reduced \Rightarrow exponential increase $\sigma \sim 1/x^{\lambda}$ much reduced.
- Saturation delayed and small in DIS within HERA energy regime, for $Q^2 ≥ 1$ GeV². JHEP 0507:062, hep-ph/0503181.

Violation of Frame Independence

- $f_{ij} \sim \alpha_s$ but $\frac{d\mathcal{P}}{dY} \sim \bar{\alpha_s} = \frac{N_c \alpha_s}{\pi} \Rightarrow f_{ij}$ formally colour suppressed.
- Multiple collisions give pomeron loops. No loops in evolution. Only loops cut in specific frame included.

Formalism not frame independent.

Higher Order Multipoles

- Beyond large N_c dipole basis overcomplete. Two dipoles can have same colour state: Quadrupole.
- Also seen from B-JIMWLK hierarchy. More complicated colour structures at each step of evolution.
- Dipole approximation very successful in e⁺e⁻. Try to find a working approximation using independent dipoles.
- Quadrupole field: Try approximate by two dipoles.

Additional Dipole Vertices

- Symmetric evolution requires also pomeron mergings. $\partial_Y T^k \sim T^{k-1}$.
- Many attempts to include additional dipole vertices: $2 \rightarrow 1$ etc.
- In our formalism dipoles are *directed* and *connected* in chains. Not just a collection uncorrelated dipoles.

Dipole Merging?

A dipole cannot vanish in the cascade leaving loose ends.

• Note that $2\mathbb{P} \to 1\mathbb{P}$ does not require $2 \to 1$ dipole vertex.

Generating the Loops

■ Loops can be generated by $1 \rightarrow 2$ splitting $+2 \rightarrow 2$ "swing".

Dipole Swing

• $(x_1, y_1) + (x_2, y_2) → (x_1, y_2) + (x_2, y_1)$. Dipole swing or colour recoupling.

$$\Delta P = \lambda \frac{(\boldsymbol{x}_1 - \boldsymbol{y}_1)^2 (\boldsymbol{x}_2 - \boldsymbol{y}_2)^2}{(\boldsymbol{x}_1 - \boldsymbol{y}_2)^2 (\boldsymbol{x}_2 - \boldsymbol{y}_1)^2} \Delta y$$

More on the Swing

- λ phenomenological parameter. Determines how fast swing happens in y.
- In MC: Randomly assign each dipole a colour index $1, 2, \ldots, N_c^2 1$.
- Swing allowed if two dipoles have same colour index.
- Adjust so that result almost frame independent. We choose $\lambda = 1$.

Dipole Picture for $\gamma^* p$ and pp

- Early suggested that semi-hard parton subcollisions & minijets important in pp collisions.
- Responsible for the rising cross section. Tevatron data successfully described by the PYTHIA MC.
- $\gamma^* p$ and pp collisions in the dipole picture. Need initial states for γ^* and p.
- $\gamma^* \to q\bar{q}$ well known. Described by ψ_L and ψ_T .

The Initial Proton

- Cannot fully be described by PQCD but needs some model assumption.
- Svalence quarks in antisymmetric colour netural state emit single gluon as 3 dipoles.
- Model: "Triangle" configuration of 3 dipoles radiating independently.
- Size of dipoles: Gaussians with average size ∼ 3.1GeV⁻¹ = r_p , determined by fit to data.
- Confinement: Dipole sizes limited. Gaussian suppression of new dipoles with average $\sim 3.1 \text{GeV}^{-1} = r_{max} = r_p$.

λ **Dependence**

Swing process saturate for $\lambda \gtrsim 0.5$. Swing effectively instantaneous. hep-ph/0610157

Results for DIS

$$\sigma_{\gamma^* p}^{tot} = \int d^2 \mathbf{r} \int_0^1 dz \{ |\psi_L(z, r)|^2 + |\psi_T(z, r)|^2 \} \sigma(z, \mathbf{r})$$

F_2 slope at HERA

• $F_2 \sim x^{-\lambda_{eff}}$. hep-ph/0610157

pp Total Cross Section

Saturation very important (small effect at HERA). Dipole swing \implies Near frame independence.

pp Impact Parameter Profile

Summary and Conclusions

- We have presented a dipole model based on a set of fairly simple ingredients.
- Using these in a MC we reproduce σ_{tot} both for $\gamma^* p$ at HERA and for pp from ISR energies to the Tevatron and beyond.
- Our results depend effectively on two parameters: Λ_{QCD} and $r_p = r_{max}$ proton size and cutoff for large dipoles.
- Swing contains λ . If λ large enough, results independent of λ .

Summary and Conclusions

- Results almost frame independent \implies Consistent treatment of saturation effects.
- Intention to find explicit frame independent formalism.
- Next step diffraction, AGK rules: how long are the chains?
- Extend model to simulate exclusive final states.
- Would give further insight into high energy evolution in QCD.