PDF-fitting procedure for the Monte Carlo solutions of evolution equations in QCD

Przemysław Stokłosa IFJ-PAN and AGH-UST DESY-HAMBURG 26-10-2006 New parton shower MC project is currently constructed by IFJ-PAN group from Krakow, based on evolution in rapidity space

- Such parton shower with non-standard evolution (CCFM-like, $\alpha(Q(1-z)), \alpha(Q(x\frac{1-z}{z}))$) etc) requires dedicated PDF fits as a part of the project
- MC is slow by its nature (permille accuracy \approx 3 days of running). Therefore MC cannot be used directly for fitting fast procedure must be designed

$$\partial_t D_A(x,t) = P_{AB}(x,t) \otimes^x D_B(x,t), \tag{1}$$

$$D_A(x,t=0) = D_A^0(x,\alpha_1^A,\dots,\alpha_k^A).$$
 (2)

 $D_A(x,t)$ denotes PDF of the type A with $A = q_i, \bar{q}_i, g; i = 1, ..., n$. and t is the evolution time. The splitting kernels $P_{AB}(x,t)$ include also coupling constants and the convolution symbol \otimes^x stands for

$$(f(x,\alpha)\otimes^x g(x,\beta))(x) = \int_x^1 dy dz \delta(x-yz)f(y,\alpha)g(z,\beta).$$
 (3)

The decomposition of the solution $D^A(x,t)$ can be written as follows

$$D_A(x,t) = D_{AB}^{\delta}(x,t) \otimes^x D_B^0(x,\alpha_1^B,\dots,\alpha_k^B)$$
(4)

$$\partial_t D^{\delta}_{AB}(x,t) = P_{AC}(x,t) \otimes^x D^{\delta}_{CB}(x,t), \tag{5}$$

$$D_{AB}^{\delta}(x,0) = \delta_{AB}\delta(1-x).$$
(6)

- Whole dependence of fitted patemeters (α_j^B) is limited to D_B^0
- Only single MC run needed for D_{AB}^{δ} (independent of α_{j}^{B})

- Convolution ⊗^x is a 1-dim integral, can be done numerically in a fast and accurate way.
- MC histogram of D^{δ} is parametrized by polynominal second order functions.
- Because we use log-scale for x, value at x close to 1 must be extrapolated from neighbouring bins
- This extrapolation could be avoided if linear scale were used, but it is not necessary for 10^{-3} precision

We use 2-dim system of gluon (G) and singlet (Σ) PDF-s

$$D_G(x,t) = D^{\delta}_{GG}(x,t) \otimes D^0_G(x) + D^{\delta}_{G\Sigma}(x,t) \otimes D^0_{\Sigma}(x),$$

$$D_{\Sigma}(x,t) = D^{\delta}_{\Sigma G}(x,t) \otimes D^0_G(x) + D^{\delta}_{\Sigma\Sigma}(x,t) \otimes D^0_{\Sigma}(x).$$
(7)

Initial conditions

$$D_G^0(x) = 1.908 \cdot x^{-1.2} (1-x)^{5.0},$$

$$D_{\Sigma}^0(x) = D_{sea}^0(x) + D_u^0(x) + D_d^0(x),$$

$$D_{sea}^0(x) = 0.6733 \cdot x^{-1.2} (1-x)^{7.0},$$

$$D_u^0(x) = 2.187 \cdot x^{-0.5} (1-x)^{3.0},$$

$$D_d^0(x) = 1.230 \cdot x^{-0.5} (1-x)^{4.0}.$$

(8)

Ratio of gluon (blue) and singlet (black) generated directly from initial distribution and obtained from convolution of D_{δ} . Evolution from Q = 1 to Q = 100 GeV, LO type

Agreement $5 \cdot 10^{-4}$ except of $x \sim 1$, where D is very small any way

Ratio of gluon (blue) and singlet (black) generated directly from initial distribution and obtained from convolution of D_{δ} . Evolution from Q = 1 to Q = 100 GeV, NLO type

Agreement 1×10^{-3} except of $x \sim 1$, where D is very small anyway

Fitting (PDFs)

- To check correction of the procedure we fitted PDFs to PDFs
- We used the same $G \Sigma$ system
- We used MINUIT and minimized χ^2

$$\chi^{2}(\alpha_{1}^{G},\ldots,\alpha_{k}^{G};\alpha_{1}^{\Sigma},\ldots,\alpha_{k}^{\Sigma}) = \sum_{A=G,\Sigma}\sum_{i}\frac{(D_{A}^{X}(x_{i},t,\alpha_{1}^{A},\ldots,\alpha_{k}^{A}) - D_{A}^{Y}(x_{i},t))^{2}}{e_{A}^{Y}(x_{i},t)^{2}}$$
(9)

X and Y denote evolution type: if X = Y - technical test, if $X \neq Y$ - physical difference

	$lpha_1^G$	$lpha_2^G$	$lpha_3^G$	$lpha_1^u$	$lpha_2^u$	$lpha_3^u$	$lpha_1^d$	$lpha_2^d$	$lpha_3^d$
1	1.908	5.000	-1.200	2.187	3.000	-0.500	1.230	4.000	-0.500
F	1.907	4.994	-1.199	2.186	3.008	-0.501	1.229	3.991	-0.505

	$lpha_1^{sea}$	$lpha_2^{sea}$	$lpha_3^{sea}$
Ι	0.67	7.00	-1.200
F	0.68	7.06	-1.199

Comparison of fitted values of coefficients with the original ones used for generation for the LO evolution at Q = 100 GeV. I – input values, F – fitted values. The initial distributions are $\alpha_1^A x^{-\alpha_2^A} (1-x)^{\alpha_3^A}$. Accuracy mostly within 2σ .

Fitting PDF to PDF-test (NLO)

	$lpha_1^G$	$lpha_2^G$	$lpha_3^G$	$lpha_1^u$	$lpha_2^u$	$lpha_3^u$	$lpha_1^d$	$lpha_2^d$	$lpha_3^d$
1	1.908	5.000	-1.200	2.187	3.000	-0.500	1.230	4.000	-0.500
F	1.905	5.002	-1.200	2.187	3.013	-0.503	1.230	3.997	-0.513

	α_1^{sea}	$lpha_2^{sea}$	$lpha_3^{sea}$
I	0.673	7.000	-1.200
F	0.678	7.094	-1.198

Comparison of fitted values of coefficients with the original ones used for generation for the NLO evolution at Q = 100 GeV. I – input values, F – fitted values. The initial distributions are $\alpha_1^A x^{-\alpha_2^A} (1-x)^{\alpha_3^A}$. Accuracy mostly within 2σ .

Fitting PDF to PDF

Fitting different evolutions: Generated NLO DGLAP, fitted LO DGLAP with $\alpha(Q(1-z))$

	α_1^G	$lpha_2^G$	$lpha_3^G$	$lpha_1^u$	$lpha_2^u$	$lpha_3^u$	$lpha_1^d$	$lpha_2^d$	$lpha_3^d$
Ι	1.908	5.000	-1.200	2.187	3.000	-0.500	1.230	4.000	-0.500
F	1.617	4.764	-1.202	1.125	2.495	-0.339	0.503	3.735	-0.539

	α_1^{sea}	$lpha_2^{sea}$	$lpha_3^{sea}$
I	0.673	7.000	-1.200
F	0.515	8.825	-1.465

Q = 100 GeV. I – input values, F – fi tted values. The initial distributions are $\alpha_1^A x^{-\alpha_2^A} (1-x)^{\alpha_3^A}$ The change in parameters is big (up to 50%)

Fitting F2

In LO we have

$$F_2(x,t) = \sum_{A=q,\bar{q}} \int_0^1 d\xi D_A(\xi,t) x e_A^2 \delta(x-\xi) = \sum_{A=q,\bar{q}} D_A(x,t) x e_A^2.$$
(10)

$$F_2(x, t, \vec{\alpha}_1, \dots, \vec{\alpha}_k) = x \sum_{A=q, \bar{q}} e_A^2 D_{AB}^{\delta}(x, t) \otimes^x D_B^0(x, \alpha_1^B, \dots, \alpha_k^B).$$
(11)

and we fi t with MINUIT with $\chi^{\!2}$

$$\chi^{2}(a,b,\cdots) = \sum_{n} \sum_{i} \frac{\left(F_{2}(x_{i},t_{n},\vec{\alpha}_{1},\ldots,\vec{\alpha}_{k}) - F_{2exp}(x_{i},t_{n})\right)^{2}}{e_{F_{2exp}}(x_{i},t_{n})^{2}}.$$
 (12)

Fitting F2

In NLO nontrivial coeffi cent functions appear

$$F_{2}(x,t) = x \sum_{A=q,\bar{q}} e_{A}^{2} D_{A}(x,t) \otimes^{x} \left(\delta \left(1-x\right) + \frac{\alpha_{s}}{2\pi} C_{A}^{\overline{MS}}(x) \right) + x \sum_{A=q,\bar{q}} e_{A}^{2} D_{g}(x,t) \otimes^{x} \frac{\alpha_{S}}{2\pi} C_{g}^{\overline{MS}}(x)$$

$$(13)$$

$$C_q^{\overline{MS}} = C_F \left(2 \left(\frac{\ln(1-z)}{1-z} \right)_+ - \frac{3}{2} \left(\frac{1}{1-z} \right)_+ - (1+z) \ln(l-z) - \frac{1+z^2}{1-z} \ln(z) + 3 + 2z - \left(\frac{\pi^2}{3} + \frac{9}{2} \right) \delta(1-z) \right)_+ - (1+z) \ln(l-z) - \frac{1+z^2}{1-z} \ln(z)$$

$$C_g^{\overline{MS}} = T_R \left(\left((1-z)^2 + z^2 \right) \ln\left(\frac{1-z}{z} \right) - 8z^2 + 8z - 1 \right).$$
(14)

Fitting F2 to F2 obtained from QCDNum16 - test (LO)

Fitting two structure functions: F2 (LO) obtained from Monte Carlo to F2 from QCDNum16

	α_1^G	$lpha_2^G$	$lpha_3^G$	$lpha_1^u$	$lpha_2^u$	$lpha_3^u$	$lpha_1^d$	$lpha_2^d$	$lpha_3^d$
Ι	1.908	5.000	-1.200	2.187	3.000	-0.500	1.230	4.000	-0.500
F	1.908	4.988	-1.199	2.187	3.07	-0.502	1.241	4.08	-0.507

	$lpha_1^{sea}$	$lpha_2^{sea}$	$lpha_3^{sea}$
Ι	0.673	7.000	-1.200
F	0.674	6.944	-1.200

Q=100 GeV. I – input values, F – fi tted values. The initial distributions are $\alpha_1^A x^{-\alpha_2^A} (1-x)^{\alpha_3^A}$

Fitting F2 to F2 obtained from QCDNum16 - test (NLO)

Fitting two structure functions: F2 (NLO) obtained from Monte Carlo to F2 from QCDNum16

	α_1^G	$lpha_2^G$	$lpha_3^G$	$lpha_1^u$	$lpha_2^u$	$lpha_3^u$	$lpha_1^d$	$lpha_2^d$	$lpha_3^d$
Ι	1.908	5.000	-1.200	2.187	3.000	-0.500	1.230	4.000	-0.500
F	1.908	4.979	-1.199	2.196	3.06	-0.503	1.25	4.04	-0.51

	α_1^{sea}	$lpha_2^{sea}$	$lpha_3^{sea}$
Ι	0.673	7.000	-1.200
F	0.675	6.86	-1.200

Q=100 GeV. I – input values, F – fi tted values. The initial distributions are $\alpha_1^A x^{-\alpha_2^A} (1-x)^{\alpha_3^A}$

- We have developed framework for fitting PDFs from Monte Carlo solutions of evolution equations.
- It is based on one-dimensional numerical convolution.
- It is fast.
- Some numerical tests have been succefully performed at the level of PDFs and at the level of F2.
- More test needed...