

SEARCHES FOR NEW PHYSICS WITH PHOTONS AT THE TEVATRON

Dan Krop University of Chicago for the CDF and DØ Collaborations

Photon 2009, May 11th 2009

The Tevatron

• pp̄ Collisions at √s=1.96 TeV
• Currently highest energy collider in the world.
• 2 multipurpose detectors •CDF & DØ

Analyses shown today use between 1 fb⁻¹ and 4.2fb⁻¹

D, Krop

Photons at the Tevatron

- Photon is one of the fundamental objects at a collider.
- 2nd most common object at the Tevatron after jets.
- Backgrounds from jet $\rightarrow \pi^{o} \rightarrow \gamma \gamma$, electron w/ track not reconstructed.

Photon Analysis Reach

No shortage of models that predict final state photons

Photon Analysis Reach

Analyses Presented Today Include These Final States

5

D. Krop

6 Initial State Photons: Exclusive Z Production

p

- Dilepton final state w/ pp intact.
 - Proceed via photoproduction.
 - Analogous to J/ ψ photoproduction at HERA.
- 8 *l*⁺*l*⁻ events observed.
- No exclusive Z events observed.

$$\begin{split} \sigma_{obs}(\gamma\gamma \rightarrow l^{+}l^{-}) &= 0.24^{+0.13}_{-0.10} \, pb \\ \sigma_{predicted}(\gamma\gamma \rightarrow l^{+}l^{-}) &= 0.256 \, pb \\ \sigma_{95\% C.L.}(excl.Z) &< 0.96 \, pb \\ \sigma_{predicted}(excl.Z) &= 0.3 \, fb \end{split}$$

γ +MET: Triple Gauge Coupling

- No SM tree-level Zγγ or ZZγ coupling.
- Reconstruct γ +MET and measure $\sigma(Z\gamma)$ *Br(Z \rightarrow vv)
- Look for deviations at high E_T(γ) to set limits on anomalous coupling parameters.

Ģ

Krop

γ +MET+ l^+l^- : Dark Photons

- Recent model [*PRD 79, 15014* (2009)] combining SUSY w/ a hidden valley (dark sector) to explain positron excesses in astrophysical observations (Pamela, ATIC, Fermi) and DAMA modulation signal.
- Can lead to excess γ+MET+l⁺l⁻ at colliders.
- Leptons should be near each other, spoiling each other's isolation.
 Look for 2 close-by leptons
 - (ΔR <0.2) after γ +MET selection.
- Use M(dilepton) to set limits on dark photon mass as function of chargino branching fraction.

At Br=0.5: $M(\gamma_D)=0.78(0.2) \text{ GeV} \rightarrow M(chargino)>142(230) \text{ GeV}$

γ+MET LED Search

 $CDF(2.0 \text{ fb}^{-1})$ $D\emptyset(2.7 \text{ fb}^{-1})$ $\mathbb{E}_T > 50 \text{ GeV}$ $\mathbb{E}_T > 70 \text{ GeV}$ $N(\text{pred.}) = 46.7 \pm 3$ $N(\text{pred.}) = 49.9 \pm 4.1$ N(obs.) = 40N(obs.) = 51

Consistent w/ SM. Set limits on LED.

<u>CDF limits (2.0 fb⁻¹)</u> M_D<1080(900) GeV for N_d=2(6)

 $\frac{D\emptyset \text{ limits (2.7 fb}^{-1})}{M_{D} < 970(831) \text{ GeV for } N_{d} = 2(6)}$

$$\vec{E}_T = -\sum_i E_T^i \hat{n}_i$$

γγ LED Search Look at M(diEM) and |cos(θ*)| for deviations from SM.

10

Fermiophobic Higgs in Diphotons

- Fermiophobic Higgs models enhance $B(h \rightarrow \gamma \gamma)$.
- Suppressed couplings to fermions gluon fusion $p_T(\gamma\gamma)$ large.
- CDF and DØ cut aggressively on p_T and use M($\gamma\gamma$) to set limits.

no

Fermiophobic Higgs Limits

- CDF: M(h_f)>106 GeV @ 95% C.L.
- DØ: M(h_f)>102.5 GeV @ 95% C.L.
- Both analyses are sensitive to M(h_f)>110 GeV that were kinematically inaccessible to LEP.

12

D. Krop

$\gamma\gamma + MET (DØ)$

γγ + MET+X final state is a signature in GMSB models, e.g.

 $q\overline{q} \to \widetilde{\chi}_1^+ \widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 + X \to \gamma \gamma \widetilde{G}\widetilde{G} + X$

 DØ looks at MET distribution in γγ events for excess. No significant excess observed.

D. Krop

$\gamma\gamma + MET (CDF)$

- Preselection use EM-timing & topology to remove beam halo and cosmic events.
- Optimize selections for GMSB signal.

 - H_T : heavy gauginos H_T >200 GeV.
 - $\Delta \phi$: Wy back-to-back $\longrightarrow \Delta \phi < \pi$ -0.35 rad.

ō

Krop

Signature-Based Searches

- Why not pick an exotic model?
 - Which one? There are very many.
 - New ones may come out in the future that we can't even think of now.
 - The SM is a pretty good model to test.
- 2 CDF signature-based analyses presented today.
 - $I\gamma b \not\in_T t \overline{t} \gamma$, 2 gauge bosons + 3rd gen. object.
 - $\gamma b j \not\in_{T}$ hard to produce in SM.

15

Signature-Based Search: $1\gamma b \not\in_{T}$ Base

Enhanced

- Base sample and $tt\gamma$ -enhanced sample consistent w/SM.
 - H_T>200 GeV, N(jets)>2
- Without tty in bg, 2.3 σ excess.
- Interpreting as tty $\rightarrow \sigma(tt\gamma)=0.15\pm0.08 \text{ pb}$
 - $\sigma_{\text{theory}}(\text{tt}\gamma)=0.08\pm0.011 \text{ pb}$

Signature-Based Search: γbj∉_⊤

- Apply additional selections to increase sensitivity on tails of distributions.
 - Everything consistent with SM expectations.

Selection	No additional cuts		With $E_T > 50 \text{ GeV}$	
	Observed	Predicted	Observed	Predicted
$E_T > 50 \text{ GeV}$	28	$30 \pm 10 \pm 5$		
$N(jets) \ge 3$	321	$329~\pm~46~\pm~46$	15	$17~\pm~7~\pm~3$
$p_T(\gamma) > 50 \text{ GeV}$	257	$247~\pm~42~\pm~39$	16	$21 \pm 8 \pm 5$
$H_T > 200 \text{ GeV}$	304	$322~\pm~45~\pm~46$	25	$28 \pm 9 \pm 5$
$E_T(b) > 50 \text{ GeV}$	286	$310~\pm~43~\pm~44$	18	$22 \pm 8 \pm 6$
$\Delta \phi(\text{jet}, E_T) > 0.5$	343	$368 \pm 47 \pm 49$	15	$16 \pm 8 \pm 4$

17

Conclusions and Outlook

- Large Tevatron photon search program covers large list of final states and big chunk of model space.
- Detectors are well understood an analyzers have strong experience.
- Expect to double the dataset by end of run.
- Tevatron has much more potential to see interesting results.
- Example: GMSB limit projection

BACKUPS

Anamolous Triple Gauge Coupling

n=3 for h₁ & h₃
 n=4 for h₂ & h₄
 h₁ & h₂ CP-violating
 h₃ & h₄ CP-conserving

Ensures unitarity and terms w/ h_1 and h_3 behave the same as terms w/ h_2 and h_4

Set limits on real parts of couplings.

Long-lived $\gamma\gamma(e^+e^-)$

- 8
- Use fine segmentation of calorimeter to "point" EM cluster.
 - do not make track requirement \rightarrow get e's & γ 's.
- Require 1 cluster to have DCA>2 cm. Look at vertex radius of 2 EM lines, R_s.
 - Background estimated from negative distribution of R_s.

Ģ

Krop

Cosmic & Beam Halo Suppression

EMTiming at CDF

Measure time of energy arrival in calorimeter w.r.t beam crossing.

EM Pointing at DØ

- Uses fine
 segmentation of
 - preshower +
 - calorimeter to "point" cluster back to vertex.

Rejecting π^{o} Background

- Transverse shape of $\pi^{o} \rightarrow \gamma \gamma$ at shower maximum larger than single γ .
- Larger hit rate in preshower for diphotons
 - Twice the opportunity to convert.

Large Extra Dimension (LED) 101

- Aim to solve hierarchy between EW (1 TeV) and Plank scales (10¹⁶ TeV)
- n_d extra large spatial dimensions which are compactified on a scale R
- SM fields confined to 4-dim, graviton propagates in the (4+ n_d) bulk
- Mass splitting small enough to integrate all KK modes (meV-MeV)

 $\sigma_{NP} = f_{SM} + \eta f_{int} + \eta^2 f_{NP},$ where $\eta = F(M_s, n_d)$ M_s : theory cutoff (~ fundamental Plank scale $M_p \sim \text{TeV}$)

From S.S.Yu