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Jet Correlations, Coherence Effects and High-pt Physics in
the Forward Region at the LHC

F. Hautmann (Oxford)

e Motivation — hard processes at forward rapidities at the LHC

e T[heoretical issues on space-like parton showers and coherent gluon
radiation

e \What do we learn from ep and pp jets



INTRODUCTION

High-pr production in the forward region at the LHC
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> phase space opening up for large /s
> unprecedented coverage of large rapidities (calorimeters+proton taggers)
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e physics of hard processes with multiple hard scales

and highly asymmetric parton kinematics r4—1, xp—0



¢ MULTI-GLUON COHERENCE IN THIS KINEMATIC REGION

e not included AT ALL in standard shower Monte Carlo generators
e included ONLY partially in NLO multi-jet calculations

e present to all orders and potentially enhanced by logs of /s/pr

OUTLINE

I. QCD coherence effects (quick review)
II. Issues on unintegrated matrix elements

III. Applications to jets: LHC prospects + pp and ep data



I. MULTI-PARTON EMISSION BY PARTON BRANCHING METHODS
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e based on dominance of collinear evolution of jets

e Factorization of QCD cross sections in collinear limit
— probabilistic (Markov) picture

e summation of logarithmically enhanced radiative contributions
(s Inpr/A)"

e soft gluon radiation by coherent branching [e.g.: HErRwIG, new PyTHIA]
Cﬁ



> soft gluons radiated over long times — quantum interferences

_ factorization in soft limit
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—s spoils probabilistic picture? NO, owing to soft-gluon coherence —



e single-emission: separate singularities along emitters’ directions
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> large-angle emissions of soft gluons sum coherently
outside angular-ordered cones



e multiple emission: (g1, g2 with ¢§ < ¢V)
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e small angle: bremsstrahlung cones
e large angle (0,4, > 0,,,): sees total charge Q, + Q,,




II. COHERENCE IN HIGH-ENERGY, SMALL-X PARTON SHOWERS

e Arguments used above rely on soft vector emission current
from external legs — leading IR singularities
e appropriate in single-scale hard processes

multi-scale: s =g > -+ > ¢> > A?
—9 le.g.: LHC forward hard processes]
=, "
> internal emissions non-negligible

> current also factorizable at high-energy:
2
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> ... o J depends on total transverse momentum transmitted
= matrix elements and pdf at fixed k, (“unintegrated”)

e virtual corrections not fully represented by A form factor
= modified branching probability P(z,k ) as well

{ radiative enhancements o In" s/p%

> Note: superleading logs m > k cancel in fully inclusive quantities

e.g: corrections O(a”) to space-like splitting functions
g g

> but not in exclusive final-state correlations



K. -DEPENDENT PARTON BRANCHING

e implement all-order summation of (aslns/p%) & IR z—1 behavior

d
e branching eq.: G(x, kr, ) = (x, kr, / Z/ — 2q)

X A(,u,zq) P(z q,kr) Q( kr 4+ (1 - 2)q, q)
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(left) Coherent radiation in the space-like parton shower for z < 1;

(right) the unintegrated splitting function P, including small-z virtual corrections.

a/xr > a1 > a (small — x coherence region)



HOW TO CHARACTERIZE UNINTEGRATED PDF's WITH PRECISION
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$ single gluon polarization dominates s > M? > A?QCD
< gauge invariance rescued (despite gluon off-shell)

[Lipatov; Ciafaloni; Catani, H; Collins et al.]

e corrections down by 1/1In s rather than 1/Q
— NLO to BFKL (+ its variants)

e can go to ARBITRARILY HIGH k.
= UV scaling violation correctly reproduced
[Altarelli et al.; Ciafaloni et al.]
= well-defined summation of higher-order logarithmic corrections

= suitable for simulations of jet physics at the LHC



ITI. APPLICATIONS TO JET PHYSICS
A) JETS IN THE FORWARD REGION AT THE LHC:

[Deak, Jung, Kutak & H, in progress|

. forward
jet

Xd_O—Z/ ¢ 0% ﬁ 0% ¢
dp?p — a/A dp% g*/B

a

B ¢ A quasi-collinear , ¢p k| -dependent

e do /dp3 from perturbative off-shell amplitudes

e k -dependent shower from branching equation + data fits

> OBTAIN AZIMUTHAL-PLANE CORRELATIONS BETWEEN JETS
ACROSS RAPIDITY INTERVALS An =4 -6



COHERENT MATRIX ELEMENTS FOR HARD EVENT

[M. Ciafaloni 1998]
e Note: dynamical cut-off on next-to-hardest jet going to largest 7

Ex.: gr = weighted final-state transverse energy
[M. Deak, K. Kutak (2009)]
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e measures transverse momentum distribution of third jet
e large kr tail (= higher orders) set by coherence effects



B) WHAT DO WE LEARN FROM PP AND EP JET FINAL STATES
Ex.: azimuthal A¢ correlation between two hardest jets

> Tevatron A¢ dominated by leading-order processes
g 10 - DY
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e good description by HERWIG as well as by NLO

| O 75<pM™*<100GeV %~

e used for MC parameter tuning in PYTHIA

> HERA A¢ not well described by standard MC "= o =

— see next

> accessible at the LHC relatively early

— how do MC describe multiple radiation?



DI-JET EP CORRELATIONS: COMPARISON WITH NLO RESULTS
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(left) Azimuth dependence and (right) Bjorken-x dependence of di-jet distributions

Q°>>10GeV? |, 107*'<z<107?

{ large variation from order-a? to order-a prediction as A¢ and x decrease
= sizeable theory uncertainty at NLO (underestimated by “u error band™”)



d? o/dxd|Ag| (pb)

(theo-dat)/dat

ANGULAR JET CORRELATIONS FROM
K. -SHOWER (CascaDE) AND COLLINEAR-SHOWER (HERWIG)
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(left) di-jet cross section; (right) three-jet cross section

Jung & H, arXiv:0805.1049 [hep-ph]

e largest differences at small A¢
e good description of measurement by k| -shower
e collinear shower insufficient to describe shapes



Normalize to the back-to-back cross section:
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> high-k |, coherent effect essential for correlation at small Ag

(cfr., e.g., MC by Hoche, Krauss & Teubner, arXiv:0705.4577:
u-pdf but no ME correction)



IV. PROSPECTS FOR FURTHER FINAL STATES AND CONCLUSIONS

e production of b, ¢ — what size NLO uncertainties at LHC energies?
[see MCONLO; Nason et al.]

> sizeable corrections from g—bb coupling to spacelike jet
> coherence effects to bb + 2 jets for my < pg?b) < pg_,;jet)
e even more complicated multi-scale effects in bb + W/Z production

[HERA-LHC Proc. arXiv:0903.3861; Mangano, 1993]

e Tevatron b-jets angular correlations
(— CDF A¢ data)

e final states with Higgs
— possibly 10 — 20 % effects in pp spectrum from z < 1 terms?
[Kulesza, Sterman & Vogelsang, 2004]
see also: Marzani, Ball, Del Duca et al., 2008; H, 2002



Tevatron b-jets correlations
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Differential Cross Section as a function of
the b-bbar DiJet invariant mass!
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e HERWIG description not satisfactory
e k, distribution of underlying event?



Conclusions

e Correlations of high-pr probes across large rapidity intervals
will be explored with forward detectors at the LHC
to unprecedented level

e Branching methods based on u-pdfs and k| -MEs useful to
> simulate high-energy parton showers
> investigate possibly new effects from QCD physics

e Systematic theoretical studies of u-pdf's ongoing
> relevant to turn these Monte-Carlo's into general-purpose tools



