Photon09, Hamburg, May 2009

Jet Correlations, Coherence Effects and High- $p_{\rm T}$ Physics in the Forward Region at the LHC

F. Hautmann (Oxford)

- Motivation hard processes at forward rapidities at the LHC
- Theoretical issues on space-like parton showers and coherent gluon radiation
 - What do we learn from ep and $p\bar{p}$ jets

INTRODUCTION

High- $p_{\rm T}$ production in the forward region at the LHC

and highly asymmetric parton kinematics $x_A \rightarrow 1, x_B \rightarrow 0$

♦ MULTI-GLUON COHERENCE IN THIS KINEMATIC REGION

• not included AT ALL in standard shower Monte Carlo generators

- included ONLY partially in NLO multi-jet calculations
- present to all orders and potentially enhanced by logs of \sqrt{s}/p_T

OUTLINE

- I. QCD coherence effects (quick review)
- **II**. Issues on unintegrated matrix elements
- III. Applications to jets: LHC prospects + $p\bar{p}$ and ep data

I. MULTI-PARTON EMISSION BY PARTON BRANCHING METHODS

- based on dominance of collinear evolution of jets
- Factorization of QCD cross sections in collinear limit \longrightarrow probabilistic (Markov) picture
- \bullet summation of logarithmically enhanced radiative contributions $(\alpha_S \ \ln p_T / \Lambda)^n$

• soft gluon radiation by coherent branching [e.g.: HERWIG, new PYTHIA]

▷ soft gluons radiated over long times —→ quantum interferences

✓ factorization in soft limit

 $|M_{n+1}^{a_1\dots a_n a}(p_1, p_n, q)\rangle = \mathbf{J}^a |M_n^{a_1\dots a_n}(p_1, p_n)\rangle , \quad \mathbf{J}^{a\mu} = \sum_i \mathbf{Q}_i^a \, \frac{p_i^{\mu}}{p_i \cdot q} \,, \, \mathbf{Q} = \text{color charge}$

interference terms \downarrow

$$d\sigma_{n+1} = d\sigma_n \ \frac{d^3q}{(q^0)^3} \ \sum_{i,j} \mathbf{Q}_i \cdot \mathbf{Q}_j \ w_{ij} \ , \quad w_{ij} = \frac{(q^0)^2 \ p_i \cdot p_j}{(p_i \cdot q)(p_j \cdot q)}$$

— not positive definite, non-Markov..?

 \rightarrow spoils probabilistic picture? NO, owing to soft-gluon coherence \hookrightarrow

• single-emission: separate singularities along emitters' directions

A large-angle emissions of soft gluons sum coherently outside angular-ordered cones • multiple emission: $(q_1, q_2 \text{ with } q_2^0 \ll q_1^0)$

$$\mathcal{M}_{ki}^{a_1 a_2} = g_s^2 \langle a_1 \ k | \ \mathbf{J}_2 \cdot \varepsilon_2 \ | a' \ i' \rangle \langle i' \ | \mathbf{J}_1 \cdot \varepsilon_1 | \ i \rangle$$
$$= g_s^2 \frac{p \cdot \varepsilon_1}{p \cdot q_1} \left(\frac{p \cdot \varepsilon_2}{p \cdot q_2} \ t^{a_2} t^{a_1} + \frac{q_1 \cdot \varepsilon_2}{q_1 \cdot q_2} \ [t^{a_1}, t^{a_2}] \right)_{ki}$$

• small angle: bremsstrahlung cones • large angle $(\theta_{pq_2} \gg \theta_{pq_1})$: sees total charge $\mathbf{Q}_p + \mathbf{Q}_{q_1}$ II. COHERENCE IN HIGH-ENERGY, SMALL-X PARTON SHOWERS

 Arguments used above rely on soft vector emission current from external legs → leading IR singularities
 appropriate in single-scale hard processes

• J depends on total transverse momentum transmitted \Rightarrow matrix elements and pdf at fixed k_⊥ ("unintegrated")

• virtual corrections not fully represented by Δ form factor \Rightarrow modified branching probability $P(z, k_{\perp})$ as well

 \diamondsuit radiative enhancements $\alpha_S^k \ln^m s/p_T^2$

 \diamond Note: superleading logs m > k cancel in fully inclusive quantities (e.g: corrections $\mathcal{O}(\alpha_s^k)$ to space-like splitting functions) \diamond but not in exclusive final-state correlations

$\mathsf{K}_\perp\text{-}\mathsf{DEPENDENT}$ parton branching

- implement all-order summation of $(\alpha_S \ln s/p_T^2) \oplus \mathsf{IR} \ x{
 ightarrow} 1$ behavior
- branching eq. : $\mathcal{G}(x, k_T, \mu) = \mathcal{G}_0(x, k_T, \mu) + \int \frac{dz}{z} \int \frac{dq^2}{q^2} \Theta(\mu zq)$

$$\times \quad \underbrace{\Delta(\mu, zq)}_{} \quad \underbrace{\mathcal{P}(z, q, k_T)}_{} \quad \mathcal{G}(\frac{x}{z}, k_T + (1-z)q, q)$$

Sudakov unintegr. splitting

(left) Coherent radiation in the space-like parton shower for $x \ll 1$; (right) the unintegrated splitting function \mathcal{P} , including small-x virtual corrections.

 $\alpha/x > \alpha_1 > \alpha$ (small - x coherence region)

HOW TO CHARACTERIZE UNINTEGRATED PDF's WITH PRECISION

 \diamondsuit single gluon polarization dominates $s \gg M^2 \gg \Lambda_{\rm QCD}^2$

 \hookrightarrow gauge invariance rescued (despite gluon off-shell)

[Lipatov; Ciafaloni; Catani, H; Collins et al.]

ullet corrections down by $1/\ln s$ rather than 1/Q

 \hookrightarrow NLO to BFKL (+ its variants)

 \bullet can go to ARBITRARILY HIGH k_{\perp}

 \Rightarrow UV scaling violation correctly reproduced

[Altarelli et al.; Ciafaloni et al.]

 \Rightarrow well-defined summation of higher-order logarithmic corrections

 \Rightarrow suitable for simulations of jet physics at the LHC

III. APPLICATIONS TO JET PHYSICSA) JETS IN THE FORWARD REGION AT THE LHC:

• $d\hat{\sigma}/dp_T^2$ from perturbative off-shell amplitudes

 $\bullet\ k_{\perp}\text{-dependent}$ shower from branching equation $+\ data$ fits

> OBTAIN AZIMUTHAL-PLANE CORRELATIONS BETWEEN JETS ACROSS RAPIDITY INTERVALS $\Delta \eta \gtrsim 4 \div 6$

COHERENT MATRIX ELEMENTS FOR HARD EVENT

[M. Ciafaloni 1998]

 \bullet Note: dynamical cut-off on next-to-hardest jet going to largest η

Ex.: q_T = weighted final-state transverse energy [M. Deak, K. Kutak (2009)]

- measures transverse momentum distribution of third jet
- large k_T tail (= higher orders) set by coherence effects

B) WHAT DO WE LEARN FROM $P\overline{P}$ AND EP JET FINAL STATES Ex.: azimuthal $\Delta \phi$ correlation between two hardest jets \triangleright Tevatron $\Delta \phi$ dominated by leading-order processes 1/σ_{dijet} dσ_{dijet} / dΔφ _{dije} DØ • good description by HERWIG as well as by NLO • used for MC parameter tuning in PYTHIA 10 10 10 **HERWIG 6.505 PYTHIA 6.225** 10 PYTHIA increased ISR (CTEO6L) \triangleright HERA $\Delta \phi$ not well described by standard MC π/2 $3\pi/4$ π $\Delta \phi_{\text{diiet}}$ (rad) \hookrightarrow see next ▷ accessible at the LHC relatively early

 \hookrightarrow how do MC describe multiple radiation?

DI-JET EP CORRELATIONS: COMPARISON WITH NLO RESULTS

(left) Azimuth dependence and (right) Bjorken-x dependence of di-jet distributions

$$Q^2 > 10 \text{ GeV}^2$$
 , $10^{-4} < x < 10^{-2}$

 \diamond large variation from order- α_s^2 to order- α_s^3 prediction as $\Delta \phi$ and x decrease \Rightarrow sizeable theory uncertainty at NLO (underestimated by " μ error band")

ANGULAR JET CORRELATIONS FROM K_{\perp} -SHOWER (Cascade) AND COLLINEAR-SHOWER (Herwig)

(left) di-jet cross section; (right) three-jet cross section

Jung & H, arXiv:0805.1049 [hep-ph]

- \bullet largest differences at small $\Delta\phi$
- \bullet good description of measurement by $k_{\perp}\text{-shower}$
- collinear shower insufficient to describe shapes

Normalize to the back-to-back cross section:

 \triangleright high-k_{\perp}, coherent effect essential for correlation at small $\Delta \phi$

(cfr., e.g., MC by Höche, Krauss & Teubner, arXiv:0705.4577: u-pdf but no ME correction)

IV. PROSPECTS FOR FURTHER FINAL STATES AND CONCLUSIONS

• production of b, c — what size NLO uncertainties at LHC energies?

[see MC@NLO; Nason et al.]

 \triangleright sizeable corrections from $g \rightarrow b\bar{b}$ coupling to spacelike jet

 \triangleright coherence effects to $b\bar{b} + 2 \ jets$ for $m_b \ll p_T^{(b\bar{b})} \ll p_T^{(jet)}$

- even more complicated multi-scale effects in $b\overline{b} + W/Z$ production [HERA-LHC Proc. arXiv:0903.3861; Mangano, 1993]
 - Tevatron *b*-jets angular correlations

($\hookrightarrow \mathsf{CDF} \ \Delta \phi \ \mathsf{data}$)

• final states with Higgs

 \rightarrow possibly 10 ÷ 20 % effects in p_T spectrum from $x \ll 1$ terms?

[Kulesza, Sterman & Vogelsang, 2004]

see also: Marzani, Ball, Del Duca et al., 2008; H, 2002

Tevatron *b*-jets correlations

Conclusions

 \bullet Correlations of high-p_T probes across large rapidity intervals will be explored with forward detectors at the LHC to unprecedented level

Branching methods based on u-pdfs and k_⊥-MEs useful to
 ▷ simulate high-energy parton showers
 ▷ investigate possibly new effects from QCD physics

Systematic theoretical studies of u-pdf's ongoing
 relevant to turn these Monte-Carlo's into general-purpose tools