Photon-Photon Collisions: Ambiguity and Duality in QCD factorization theorem

I.V. Anikin (JINR, Dubna)

in collaboration with
I. O. Cherednikov, N. G. Stefanis and O.V. Teryaev (arXiv:0806.4551[hep-ph], EPJC, in press)

PHOTON'09, Hamburg
May 9, 2009

Contents

- Factorization in " s " - and " t " - channels: GDAs and TDAs;
- Factorization in overlap region: GDAs vs. TDAs;
- Duality in φ_{E}^{3} model (α-reps);
- Duality in QCD;
- SSA and Duality;
- Conclusions.

Factorization in " s " - and " t " - channels: GDAs and TDAs

Factorization in overlap region: GDAs vs. TDAs

When both " s " and " t " are small compared to Q^{2}, both GDA- and TDA- schemes of factorization can be performed for $\gamma^{*} \gamma \rightarrow \pi \pi$.

Therefore, the question now is:

ADDITIVITY: GDA + TDA
or

DUALITY: GDA = TDA ?

Duality in φ_{E}^{3} model

Asymptotic Formula (Laplace int.) \Longleftrightarrow Factorization Formula

The contribution of the leading "box" diagram can be written as

$$
\begin{aligned}
& \mathcal{A}\left(s, t, m^{2}\right)=-\frac{g^{4}}{16 \pi^{2} \Lambda^{4}} \tilde{\mathcal{A}}, \\
& \tilde{\mathcal{A}}=\int_{0}^{1} \frac{\prod_{i=1}^{4} d \beta_{i}}{\tilde{D}^{2}} \exp \left[-\frac{Q^{2}}{\Lambda^{2}} \frac{\beta_{1} \beta_{2} \bar{\beta}_{3} \bar{\beta}_{4}}{\tilde{D}}-\frac{s}{\Lambda^{2}} \frac{\beta_{2} \beta_{4} \bar{\beta}_{1} \bar{\beta}_{3}}{\tilde{D}}\right. \\
& \left.-\frac{t}{\Lambda^{2}} \frac{\beta_{1} \beta_{3} \bar{\beta}_{2} \bar{\beta}_{4}}{\tilde{D}}-\frac{m^{2}}{\Lambda^{2}} \frac{\tilde{D}}{\bar{\beta}_{1} \bar{\beta}_{2} \bar{\beta}_{3} \bar{\beta}_{4}}\right],
\end{aligned}
$$

where $\tilde{D}=\beta_{1} \bar{\beta}_{2} \bar{\beta}_{3} \bar{\beta}_{4}+\ldots+\bar{\beta}_{1} \bar{\beta}_{2} \bar{\beta}_{3} \beta_{4}$ and $\bar{\beta}_{i}=1-\beta_{i}$.

Three Regimes

(a) $s \ll Q^{2}$ while t is of order Q^{2};
(b) $t \ll Q^{2}$ while s is of order Q^{2};
(c) $s, t \ll Q^{2}$;

Regime (a): $s \ll Q^{2}$ while t is of order Q^{2} (GDA)

$$
s / \Lambda^{2}=1, t / \Lambda^{2}=50.0, Q^{2} / \Lambda^{2}=100.0
$$

- the β_{2}-wing $\Longrightarrow 85 \%$ to the whole amplitude
- the region : $\beta_{1}, \beta_{2} \in[0,0.1] \Longrightarrow 5 \%$

By analytic integration over the region where $\beta_{1} \sim 0$ (corresponding to the "GDA factorization"):

$$
\begin{aligned}
\tilde{\mathcal{A}}_{\mathrm{GDA}}^{\mathrm{as}}\left(s, t, m^{2}\right)= & \int_{0}^{1} \frac{d \beta_{2} d \beta_{3} d \beta_{4}}{\tilde{D}_{0}^{2}} \\
& \exp \left(-\frac{s}{\Lambda^{2}} \frac{\beta_{2} \beta_{4} \bar{\beta}_{3}}{\tilde{D}_{0}}-\frac{m^{2}}{\Lambda^{2}} \frac{\tilde{D}_{0}}{\bar{\beta}_{2} \bar{\beta}_{3} \bar{\beta}_{4}}\right) \\
& {\left[\frac{Q^{2}}{\Lambda^{2}} \frac{\beta_{2} \bar{\beta}_{3} \bar{\beta}_{4}}{\tilde{D}_{0}}+\frac{t}{\Lambda^{2}} \frac{\beta_{3} \bar{\beta}_{2} \bar{\beta}_{4}}{\tilde{D}_{0}}+\frac{m^{2}}{\Lambda^{2}}\right]^{-1} }
\end{aligned}
$$

where $\tilde{D}_{0}=\beta_{2} \bar{\beta}_{3} \bar{\beta}_{4}+\bar{\beta}_{2} \beta_{3} \bar{\beta}_{4}+\bar{\beta}_{2} \bar{\beta}_{3} \beta_{4}$.

One should stress that when $s / \Lambda^{2}=1.0, t / \Lambda^{2}=50.0$, the ratio between the asymptotic and the exact amplitude is

$$
R=\frac{\tilde{\mathcal{A}}_{\mathrm{GDA}}^{\mathrm{as}}}{\tilde{\mathcal{A}}}=1.01
$$

Regime (b): $t \ll Q^{2}$ while s is of order Q^{2} (TDA)

For this regime, the asymptotic formula is given by the following replacement:

$$
\mathcal{A}_{\mathrm{TDA}}^{\mathrm{as}}\left(s, t, m^{2}\right) \stackrel{s \leftrightarrows t}{\Longrightarrow} \mathcal{A}_{\mathrm{GDA}}^{\mathrm{as}}\left(t, s, m^{2}\right) .
$$

Regime (c): $t, s \ll Q^{2}$ (overlap)

Option 1: $\tilde{\mathcal{A}} \approx\left\{\int_{\text {Reg.-1 }}+\underset{\text { Reg. }-3}{ }+\underset{\text { Reg. }-4}{ }\right\} \Rightarrow 80 \%$ of the ex.ampl.
Option 2: $\left.\tilde{\mathcal{A}} \approx \tilde{\mathcal{A}}_{\mathrm{GDA}}^{\mathrm{as}}\left(s, t, m^{2}\right)\right|_{t \rightarrow s} \Rightarrow \quad R=\tilde{\mathcal{A}}_{\mathrm{GDA}}^{\mathrm{as}} / \tilde{\mathcal{A}}$

Analyzing the ratio $R=\tilde{\mathcal{A}}_{\text {GDA }}^{\text {as }} / \tilde{\mathcal{A}}$ in terms of t / Λ^{2}, we obtain that

Conclusions for φ_{E}^{3}-model

Regime (a) and (b): NO Ambiguity in Factorization.
Regime (c)

Option 1: NO Factorization \Rightarrow
$\tilde{\mathcal{A}} \approx\left(\beta_{1}-\right.$ wing $) \oplus\left(\beta_{2}-\right.$ wing $) \equiv$ "ADDITIVITY"
Option 2: Factorization \Rightarrow
$\tilde{\mathcal{A}} \approx$ either $\tilde{\mathcal{A}}_{G D A}^{\text {as }}$ or $\tilde{\mathcal{A}}_{\text {TDA }}^{\text {as }} \equiv " D U A L I T Y "$

Duality in QCD

We consider the process:

$$
\gamma_{L}^{*}(q)+\gamma_{T}\left(q^{\prime}\right) \rightarrow \pi\left(p_{1}\right) \pi\left(p_{2}\right)
$$

The conditions to observe duality are

- the helicity amplitude: $\mathcal{A}_{(0,+)}=\varepsilon_{\mu}^{(0)} T_{\gamma \gamma^{*}}^{\mu \nu} \varepsilon_{\nu}^{\prime(+)}$
- $\xi \approx 1$ (small s) for TDA Factorization
- $\zeta \approx 0($ small $t)$ for GDA Factorization

Diagrams

Parametrization of photon-to-pion matrix elements

The $\gamma \rightarrow \pi^{-}$matrix elements, entering the TDA-factorized amplitude, can be parameterized in the form

$$
\begin{aligned}
& \left\langle\pi^{-}\left(p_{2}\right)\right| \bar{\psi}(-z / 2) \gamma_{\alpha} \gamma_{5}[-z / 2 ; z / 2] \psi(z / 2)\left|\gamma\left(q^{\prime}, \varepsilon^{\prime}\right)\right\rangle \stackrel{\mathcal{F}}{=} \\
& \frac{e}{f_{\pi}} \varepsilon_{T}^{\prime} \cdot \Delta_{T} P_{\alpha} A_{1}(x, \xi, t)
\end{aligned}
$$

where $P=\left(p_{2}+q^{\prime}\right) / 2$, and $\Delta=p_{2}-q^{\prime}$.

To normalize the axial-vector TDA, A_{1}, we express A_{1} in terms of the axial-vector form factor measured in the weak decay $\pi \rightarrow / \nu_{l} \gamma$, i.e.,

$$
\int_{-1}^{1} d x A_{1}(x, \xi, t)=2 f_{\pi} F_{A}(t) / m_{\pi}
$$

where $f_{\pi}=0.131 \mathrm{GeV}, m_{\pi}=0.140 \mathrm{GeV}$, and $F_{A}(0) \approx 0.012$.

Thus, the helicity amplitude associated with the TDA mechanism reads

$$
\begin{aligned}
\mathcal{A}_{(0, j)}^{\mathrm{TDA}} & =\frac{\varepsilon^{\prime}(j) \cdot \Delta^{T}}{Q} \mathcal{F}^{\mathrm{TDA}} \\
\mathcal{F}^{\mathrm{TDA}} & =\left[4 \pi \alpha_{s}\left(Q^{2}\right)\right] \frac{C_{F}}{2 N_{c}}(\mathrm{tw}-2 \mathrm{DA})(\mathrm{tw}-2 \mathrm{TDA}),
\end{aligned}
$$

where

$$
\begin{aligned}
& (\mathrm{tw}-2 \mathrm{DA})=\int_{0}^{1} d y \phi_{\pi}(y)\left(\frac{1}{y}+\frac{1}{\bar{y}}\right) \\
& (\mathrm{tw}-2 \mathrm{TDA})=\int_{-1}^{1} d x A_{1}(x, \xi, t)\left(\frac{e_{u}}{\xi-x}-\frac{e_{d}}{\xi+x}\right)
\end{aligned}
$$

where $\xi^{-1}=1+2 W^{2} / Q^{2}$; the 1-loop $\alpha_{s}\left(Q^{2}\right)$ in the $\overline{\mathrm{MS}}$-scheme with $\Lambda_{\mathrm{QCD}}=0.312 \mathrm{GeV}$ for $N_{f}=3$.

The GDA helicity amplitude is (Wandzura-Wilczek approx.)

$$
\begin{aligned}
\mathcal{A}_{(0, j)}^{\mathrm{GDA}} & =\frac{\varepsilon^{\prime}(j) \cdot \Delta^{T}}{Q} \mathcal{F}^{\mathrm{GDA}} \\
\mathcal{F}^{\mathrm{GDA}} & =2 \frac{W^{2}+Q^{2}}{Q^{2}}\left(e_{u}^{2}+e_{d}^{2}\right)(\mathrm{tw}-3 \mathrm{GDA} W \mathrm{~W})
\end{aligned}
$$

where

$$
(\mathrm{tw}-3 \mathrm{GDA} W \mathrm{~W})=\int_{0}^{1} d y \partial_{\zeta} \Phi_{1}\left(y, \zeta, W^{2}\right)\left(\frac{\ln \bar{y}}{y}-\frac{\ln y}{\bar{y}}\right)
$$

where $2 \zeta-1=\beta \cos \theta_{c m}^{\pi}$ and $\cos \theta_{c m}^{\pi}=2 t /\left(W^{2}+Q^{2}\right)-1$ and the partial derivative is defined by $\partial_{\zeta}=\partial / \partial(2 \zeta-1)$.

Modeling of non-perturbative objects

- Twist 2 TDA $A_{1}(x, \xi) \xrightarrow{\xi \approx 1}$

$$
\varphi_{\gamma}\left(\frac{1+x}{2}\right) \sim\left\{a_{1}^{D}=-0.5, a_{2} \in[0.3,0.6], a_{4} \in[0.4,0.8]\right\}
$$

- Twist $3 \operatorname{GDA~}_{3}^{W W}(z, \zeta), \Phi_{A}^{W W}(z, \zeta) \stackrel{\zeta \approx 0}{\Longrightarrow}$ $\Phi_{1}(z) \sim\left\{\tilde{B}_{10}\left(W^{2}\right), \tilde{B}_{12}\left(W^{2}\right)\right\}$
$\tilde{B}_{10}\left(W^{2}\right)$ can be discarded, while $\tilde{B}_{12}\left(W^{2}\right)$ can be modeled either by simplest ansatz $\beta^{2} 10 R_{\pi} /\left(9 N_{f}\right)$ or by the resonance formula .
(The relevant phase shift of the $\pi \pi$ scattering is defined by $\left.\delta_{2}\left(W_{0}=0.8\right) \approx 0.03 \pi\right)$

Duality in QCD

Thus, duality in QCD we observed means that

$$
\mathcal{A}_{(0,+)}^{\mathrm{TDA}}=\frac{\varepsilon^{\prime(+)} \cdot \Delta^{T}}{Q}\left[4 \pi \alpha_{s}\left(Q^{2}\right)\right](\mathrm{tw}-2 \mathrm{DA})(\mathrm{tw}-2 \mathrm{TDA})
$$

and

$$
\mathcal{A}_{(0,+)}^{\mathrm{GDA}}=\frac{\varepsilon^{\prime(+)} \cdot \Delta^{T}}{Q}(\mathrm{tw}-3 \mathrm{GDA}),
$$

are equivalent each other.

SSA and Duality

$$
\mathcal{A}^{\mathrm{SSA}}=\frac{d \sigma_{\rightarrow}-d \sigma_{\leftarrow}}{d \sigma_{\rightarrow}+d \sigma_{\leftarrow}}=\frac{\operatorname{lm}\left[\rho_{k}^{(+, 0)}\right] \operatorname{lm}\left[{ }^{*} \mathcal{A}_{(+,+)} \mathcal{A}_{(0,+)}\right]}{4 \rho_{k}^{(+,+)}\left|\mathcal{A}_{(+,+)}\right|^{2}} .
$$

where

$$
\begin{aligned}
& \rho_{k}^{\left(i, i^{\prime}\right)} \stackrel{\text { def }}{=}\left[\stackrel{*(i)}{\varepsilon} \cdot \mathcal{L}\left(k_{1}, k_{2}\right)\right]\left[\varepsilon^{\left(i^{\prime}\right)} \cdot \mathcal{L}^{+}\left(k_{1}, k_{2}\right)\right], \\
& \mathcal{L}_{\alpha}\left(k_{1}, k_{2}\right) \stackrel{\text { def }}{=} \bar{u}\left(k_{2}\right) \gamma_{\alpha} u\left(k_{1}\right)
\end{aligned}
$$

Conclusions

We have shown that when it happens that both Mandelstam variables s and t are much less than the large momentum scale Q^{2}, with the variables s / Q^{2} and t / Q^{2} varying in the interval ($0.001,0.7$), then the TDA and the GDA factorization mechanisms are equivalent to each other and operate in parallel.

* We demonstrated that duality may serve as a tool for selecting suitable models for the non-perturbative ingredients of QCD factorization of various exclusive amplitudes.
\star We also observed that twist-3 GDAs appear to be dual to the convolutions of leading-twist TDAs and DAs, multiplied by a QCD effective coupling.

Literature for GDAs and TDAs:

B B. Pire and L. Szymanowski, "Hadron annihilation ...", Phys. Rev. D 71, 111501 (2005)

Q J. P. Lansberg, B. Pire and L. Szymanowski, "Exclusive meson pair production ...", Phys. Rev. D 73, 074014 (2006)

B B. Pire, M. Segond, L. Szymanowski and S. Wallon, "QCD factorizations ...", Phys. Lett. B 639, 642 (2006)
M. Diehl,
"Generalized parton distributions", Phys. Rept. 388, 41 (2003)

