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outline:outline:

�� ad hoc GPD models to provide estimatesad hoc GPD models to provide estimates

�� flexible GPD models: Are we ready?  (H1/ZEUS fits)flexible GPD models: Are we ready?  (H1/ZEUS fits)

�� dispersion relation approach              (global fit example)dispersion relation approach              (global fit example)



Photon Photon leptoproductionleptoproduction

measured by H1, ZEUS, HERMES, CLAS, HALL AH1, ZEUS, HERMES, CLAS, HALL A collaborations

planed at COMPASS, JLAB@12GeV,   perhaps at ?? EIC,

e±N → e±Nγ
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interference of DVCSDVCS and BetheBethe--HeitlerHeitler processes

12 Compton form factors                              elastic form factors

(helicity amplitudes)
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GPDsGPDs embed nonembed non--perturbativeperturbative physicsphysics

GPDs appear in various hard exclusive processes, 

e.g., hard electroproduction of photons (DVCS)

)(q∗γ γ

p'p
DVCS

GPDGPD

Q2 > 1GeV2

t = ∆2 − fix

CFF
Compton form factor

observable

hard scattering part

perturbation theory

(our conventions/microscope)

GPD

universal 

(conventional) 

x + ξ x− ξ

higher twist

depends on 

approximation

F(ξ,Q2, t) =
∫ 1
−1
dx C(x, ξ, αs(µ),Q/µ)F (x, ξ, t, µ) +O(

1
Q2 )

[DM et. al  (90/94)
Radyushkin (96)
Ji (96)]



relations among harmonics and GPDs are based on           expansion:
(all harmonics are expressed by twist-2 and -3 GPDs)                       
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� twisttwist--twotwo coefficient functions at nextnext--toto--leadingleading order 

� evolution kernels at nextnext--toto--leadingleading order 

� nextnext--toto--nextnext--toto--leadingleading order in a specific conformal subtraction scheme

� twisttwist--threethree including quark-gluon-quark correlation at LO 

� partial twisttwist--threethree sector at nextnext--toto--leadingleading order 

� `target mass corrections’ (not well understood)

[Diehl et. al (97)
Belitsky, DM, Kirchner (01)]

[Belitsky, DM, Freund (01)]

[Belitsky, DM (97);
Mankiewicz et. al (97);
Ji,Osborne (98)]

[KMP-K &
Schaefer 06]

[Anikin,Teryaev, Pire (00);
Belitsky DM (00); Kivel et. al]

[Kivel, Mankiewicz (03)]

setting up the perturbative framework:

[Belitsky DM (01)]



GPD related hard exclusive processesGPD related hard exclusive processesGPD related hard exclusive processes

•• Deeply virtual Compton scattering (clean probe)Deeply virtual Compton scattering (clean probe)

γ∗ ( )*γ

p'

e e'

•• Hard exclusive meson production (flavor filter)Hard exclusive meson production (flavor filter)

γ ∗
M

p'p

e e'

•• etc.etc.

x

η

scanned area of the surface as scanned area of the surface as 

a  functions  of  lepton energya  functions  of  lepton energy

−+→ µµ'' peep

+µ
−µ

γp→ p′e+e−

ep→ e′p′γ

ep→ e′p′µ+µ−

ep→ e′p′π

ep→ e′p′ρ

ep→ e′nπ+

ep→ e′nρ+

twist-two observables:

cross sections 

transverse target spin 

asymmetries



• CFFCFF given as GPDGPD convolution:

Can one `measure’ Can one `measure’ GPDsGPDs??

H(ξ, t,Q2)
LO
=

∫ 1

−1

dx

(
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−
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)
H(x, η = ξ, t,Q2)

LO
= iπH−(x = ξ, η = ξ, t,Q2) + PV

∫ 1

0

dx
2x

ξ2 − x2
H−(x, η = ξ, t,Q2)

• CFFsCFFs satisfy dispersion relations
(not the physical ones, threshold ξ0 set to 0)

H−(x, x, t,Q2) ≡ H(x, x, t,Q2)−H(−x, x, t,Q2)
LO
=

1

π
ℑmF(ξ = x, t,Q2)

• H(x,x,t,�2) viewed as spectral function (s-channel cut):

[Frankfurt et al (97)
Chen (97)
Terayev (05) 
KMP-K (07)
Diehl, Ivanov (07)]
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1

π
PV
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0

dξ′
(

1
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1

ξ + ξ′

)
ℑmF(ξ′, t, Q2) + C(t,Q2)

[Terayev (05)]

accessaccess to the GPDGPD on the cross-over line h = x  (at LO )



GPD PropertiesGPD Properties

H(x, η = ξ, t, µ2 = Q2)
a non-trivial interplay of variable dependence

• t-dependence dies out at large x (spectator models, indicated by lattice & ΧQS-model)

• effective Regge behavior (from phenomenology) at small x; unknown h-dependence

• evolution depends on the GPD shape

• reduction to PDFs: 

• generalized form factor sum rules, e.g.:
(polynomiality, GPD support property)

• Ji’s sum rule

• positivity constraints (valid at LO) [P. Pobylitsa 02] 

(strongly constraining variable interplay in the outer region) 

at least four phenomenological important GPDs for each parton

q(x, µ2) = lim
∆→0

H(x, η, t, µ2)

GPDs are intricate functions:

GPD-constraints:

F1(t) =

∫ 1

−1

dxH(x, η, t, µ2)

1

2
=

∫ 1

−1

dx x(H + E)(x, η, t = 0, µ2)



A A partonicpartonic duality interpretationduality interpretation

dual interpretation on partonic level:

central region  - η < x < η

mesonic exchange in t-channel

outer region η < x

partonic exchange in s-channel

support extension 

is unique [DM et al. 92]

ambiguous (D-term)
[DM, A. Schäfer (05)

KMP-K (07)]

quark GPD (anti-quark x → -x):
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Modeling & EvolutionModeling & Evolution
outer region governs the evolution at the cross-over trajectory

GPD at h = x is `measurable’ (LO)

µ2 d
dµ2H(x, x, t, µ2) =

∫ 1
x

dy
x V (1, x/y, αs(µ))H(y, x, µ2)

central region follows 

(polynomiality of moments) 

net contribution of 
outer + central region is
governed by a sum rule:

outer region governs evolution  

x
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Overview: GPD representationsOverview: GPD representations

``light``light--ray spectral functions’’ray spectral functions’’
diagrammatic α-representation k + p1 k + p2

p2p1

≡
∫∞
−∞

dκ
2π e

iκ(xP+
−P+

−2k+)

DM, Robaschik, Geyer, 
Dittes, Hoŕejśi (88 (92) 94)

A. Radyushkin (96)

called  double distributionsdouble distributions

SL(2,R) (conformal) expansionSL(2,R) (conformal) expansion
(series of local operators) 

one version is called Shuvaev transformation, 
used in `dual’ (t-channel) GPD parameterization

Shuvaev (99,02);  Noritzsch (00)
Polyakov (02,07) 

Radyushkin (97);
Belitsky, Geyer, DM, Schäfer (97); 
DM, Schäfer (05); ….

light cone wave function overlaplight cone wave function overlap
Diehl, Feldmann, 
Jakob, Kroll (98,00)

Diehl, Brodsky, 
Hwang (00)

(Hamiltonian approach in light-cone quantization)

each representation has its own advantages,

however, they are equivalent (clearly spelled out in [Hwang, DM 07])

∑

diagrams



GPDsGPDs
LCLC--wavewave

functionsfunctions

unintegratedunintegrated

PDsPDs

hard exclusivehard exclusive

processesprocessesexclusive exclusive 

processesprocesses

@ large t@ large t

form form 

factorsfactors

partonparton

densities densities 

((PDsPDs))

latticelattice

simulationssimulations

QCDQCD--modelsmodels

ReggeRegge--phenomphenom..

``amplitudes’’``amplitudes’’

3D3D--picture picture 

spin content spin content 

dualityduality



Strategies to analyze DVCS dataStrategies to analyze DVCS data
GPD model approach: 

ad hoc modeling:   VGG code   [Goeke et. al (01) based on Radyuskin’sDDA]

(first decade)           BKM model [Belitsky, Kirchner, DM (01) based on RDDA]

`aligned jet’ model [Freund, McDermott, Strikman (02)]

Kroll/Goloskokov (05) based on RDDA [not utilized for DVCS]

`dual’ model [Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07]

“  -- “     [KMP-K (07) in MBs-representation]

Bernstein polynomials [Liuti et. al (07)]

physical models: not applied [Radyuskin et.al (02); Tiburzi et.al (04); Hwang DM (07)]…

flexible models: any representation by including unconstrained degrees of freedom

(for fits)                    KMP-K (07/08) for H1/ZEUS in MBs-representation

What is the physical content of `invisible’ (unconstrained) degrees of freedom? 

Extracting CFFs from data: real and imaginary part

i.  (almost) without modeling   [Guidal, Moutarde (08/09)]

ii.  dispersion integral fits    [KMP-K (08),KM (08/09)]

iii. flexible GPD modeling       [KM (08/09)]



Ready for flexible GPD model fits?Ready for flexible GPD model fits?

hypothesis of GPD momentshypothesis of GPD moments
(a set of parameters)

experimental dataexperimental data
H1/ZEUS 

(JLAB, HERMES)

GeParDGeParD a N(N)LO routine

for the evaluation of gen. FFasymmetries asymmetries 

cross sectionscross sections

method of method of 

least squaresleast squares
(MINUIT)

observables observables 
(in terms of gen. FF)

the answer is YES for small x and NO for JLAB@6GeV kinematics:

• reasonable well motivated hypotheses of GPDs (moment) must be implemented

• many parameters – Is a least square fit an appropriate strategy?

• some technical, however, straightforward work is left  (reevaluation of observables)



DVCS fits for H1 and ZEUS dataDVCS fits for H1 and ZEUS data

DVCS cross section measured at small

suppressed contributions  <<0.05>> relative O(ξ)

predicted by

• LO data are described with  - huge (wrong) t-slope [Belitsky, DM, Kirchner (01)]

- inconsistent GPDs [Freund, McDermott, Strikman (03)]

- missing factor of ¼  [Guzey, Teckentrup (06,08)]

• NLO works with ad hoc GPD models [Freund, McDermott (02)]

results strongly depend on employed PDF parameterization

do a simultaneous fit to DIS and DVCS do a simultaneous fit to DIS and DVCS [KMP-K (07)]

use flexible GPD models in a twouse flexible GPD models in a two--step fitstep fit [KMP-K (08)]

40GeV �W � 150GeV, 2GeV2 � Q2 � 80GeV2, |t| � 0.8GeV2

dσ

dt
(W, t,Q2) ≈

4πα2

Q4
W 2ξ2

W 2 +Q2

[
|H|

2
−
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4M2
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|E|
2 +

∣∣∣H̃
∣∣∣
2
] (
ξ, t,Q2

) ∣∣∣
ξ= Q2

2W2+Q2

xBj ≈ 2ξ = 2Q2

2W 2+Q2



good DVCS fits at good DVCS fits at LOLO, , NLONLO, and , and NNLONNLO with flexible GPD with flexible GPD ansatzansatz



quark quark skewnessskewness ratio from DVCS fits @ LOratio from DVCS fits @ LO

• @LO the conformal ratio is ruled out for sea quark GPD

• generically, one finds a zero-skewness effect over a large Q2 lever arm 

• this zero-skewness effect is non-trivial to realize in conformal space 
(SO(3) sibling poles are required)

W = 82GeV ξ ∼ 10−5 · · · 10−2

R = ℑmADVCS

ℑmADIS

LO
= H(ξ,ξ)

H(2ξ,0)
≈ 2αr r = H(ξ,ξ)

H(ξ,0)

conformal ratioconformal ratio

conformal ratioconformal ratio



• (normalized) profile functions 

ρ ∝
∫
d2.∆⊥ e

i�b·�∆⊥H(x, 0, t = −.∆2⊥)

• t-dependence:  exponential       shrinkage is disfavored     (α’ ≈ 0)

dipole                shrinkage is visible  (α’ ≈ 0.15  at Q2=4 GeV2)

sea quarkssea quarks gluonsgluons

essentially differ 

for b > 1 fm

• CFF H posses ``pomeron behavior’’  ξ-α(Q) - α’(Q)t

� α increases with growing Q2

� α’ decreases growing Q2



Ready for dispersion relation fits?Ready for dispersion relation fits?

hypothesis of hypothesis of 

GPD on crossGPD on cross--over lineover line
(a set of parameters)

experimental dataexperimental data
JLAB, HERMES, 

(COMPASS)

dispersion integral
+

subtraction constant 
asymmetries asymmetries 

cross sectionscross sections

method of method of 

least squaresleast squares
(MINUIT)

observables observables 
(in terms of gen. FF)

the answer is YES, however, more data are needed:

• to pin down the GPD models (on the cross over line h = x)

• to overcome the hypotheses of H (and twist-two) dominance

efficient code is needed



BCA HERMESBCA HERMES

BSA CLAS/JLABBSA CLAS/JLAB

HALL A/JLABHALL A/JLAB

Global GPD fit example: HERMES & JLABGlobal GPD fit example: HERMES & JLAB



• quality of global fit is good, e.g.,

• model depended extraction of GPD H(x,x,t)  and subtraction constant

within some assumptionsassumptions

• prediction for COMPASS asymmetry 

χ2/d.o.f . ≈ 28/34

t=0

t=-0.3 GeV2

ABCSA = dσ↑+−dσ↓−

dσ↑++dσ↓−

H(x, x, t) = n r 2α
(

2x

1 + x

)−α(t)(
1− x

1 + x

)b
1(

1− 1−x
1+x

t
M2

)p .



SummarySummary

compatible strategies to analyze DVCS data compatible strategies to analyze DVCS data 

� analytic formulae, fitter code to extract CFFs

� flexible GPD models + fitting (minimizing Χ2)

� dispersion integral technique for fixed target experiments

GPDsGPDs are intricate and (thus) a promising toolare intricate and (thus) a promising tool

� to reveal the transverse distribution of partons

� to address the spin content of the nucleon

� providing a bridge to non-perturbative methods (e.g., lattice)

hard photon hard photon leptoproductionleptoproduction (DVCS)(DVCS)

• possesses a rich structure, allowing to access various CFFs/GPDs

• it is elaborated at twist-three (partly NLO) and NNLO

• it is widely considered as a  theoretical clean process



Back up slides are comingBack up slides are coming



(partonic) `quantum’ numbers in GPD representations 

spectator model
leading SO(3) PW
t-factorized (DD)

? about representation

is not so essential

should be replaced by

How a GPD looks like on its 
cross-over trajectory ?



SL(2,R) representations for SL(2,R) representations for GPDsGPDs
• support is a consequence of Poincaré invariance (polynomiality)

• inverse relation is given as series of mathematical distributions:

• conformal moments evolve autonomous  (to LO and beyond in a special scheme) 

• various ways of resummation were proposed:

• smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]

• mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]

• dual parameterization (a mixture of both) [M. Polyakov, A. Shuvaev (02)]

• based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]

• MellinMellin--Barnes integralBarnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

Hj(η, t, µ
2) =

∫ 1

−1

dx cj(x, η)H(x, η, t, µ2) , cj(x, η) = η
jC

3/2
j (x/η)

µ
d

dµ
Hj(η, t, µ

2) = −
αs(µ)

2π
γ
(0)
j Hj(η, t, µ

2)

H(x, η, t) =
∞∑

j=0

(−1)jpj(x, η)Hj(η, t) , pj(x, η) ∝ θ(|x| ≤ η)
η2 − x2

ηj+3
C
3/2
j (−x/η)



GPD ansatz at small x from t-channel view

� at short distance a quark/anti-quark state 
is produced, labeled by conformal spin j+2

� they form an intermediate mesonic state 
with total angular momentum J
strength of coupling is

� mesons propagate with

� decaying into a nucleon anti-nucleon pair 
with given angular momentum J,
described by an impact form factor

! GPD E is zero if chiral symmetry holds
(partial waves are Gegenbauer polynomials with index 3/2)

D-term arises from the SO(3) partial wave J=j+1  (j      -1)

1
m2(J)−t ∝

1
J−α(t)

P̄1 P2

γ∗

q̄

γ(∗)

q
fJj

fJj , J ≤ j + 1

FJ
j (t) =

fJj
J − α(t)

1

(1− t
M2(J) )

p



Can the Can the skewnessskewness function be constrained from lattice ?function be constrained from lattice ?

∫ 1

0

dξ ξjℑmF(ξ, t,Q2)
LO
= πfj(t,Q

2)
[
1 + δj(t,Q

2)
]

• relation among measurable and GPD Mellin moments at h=0:

• deviation factors:

are given by a series of operator expectation values with increasing spin j+n+1

δj(t, µ
2) =

∞∑

n=2

even

f
(n)
j+n(t, µ

2)

fj(t, µ2)
, f

(n)
j (t, µ2) =

1

n!

dn

dηn
fj(η, t, µ

2)
∣∣∣
η=0

• lattice can evaluate j=0,1,2,(3), i.e., n=2: thanks to 

Ph. Hägler

• ? wrong expectation from evolution:

the analog small x prediction is ruled out
[Shuvaev et al. (99)]

δj(t, µ
2) =

∫ 1
0
dxxjS(x, t, µ2)F (x, η = 0, t, µ2)
∫ 1
0
dxxjF (x, η = 0, t, µ2)

δj ∼
2j+1Γ(5/2 + j)

Γ(3/2)Γ(3 + j)
− 1

δ0(t, µ
2 = 4GeV2) ≈ 0.2+?

δ0 ∼ 0.5 δ1 ∼ 1.5


