Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
		00000		

New constraints on supersymmetric models from $b \rightarrow s \gamma$

Farvah Nazila Mahmoudi

Laboratoire de Physique Corpusculaire Clermont-Ferrand, France

PHOTON 09 - DESY, May 11, 2009

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	000	O
Outline				

- Introduction
- 2 $B \rightarrow X_s \gamma$ Inclusive Branching ratio Isospin Asymmetry
- Superlso

4 Results

6 Conclusion

⇒ >

Introduction ●00000	$B \rightarrow X_{s} \gamma$ 0000	SuperIso 00000	Results 000	Conclusion O
Introduction				

New physics appears as a necessity:

- cosmological problems: dark matter, dark energy
- hierarchy problem in the Standard Model
- unification of interactions
- • •

Many realistic theoretical models beyond the SM!

• Need for constraints!

Let's take Supersymmetry as an example.

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
00000	0000		000	O
SUSY C	onstraints			

- Collider limits
- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$\Delta a_{\mu} \equiv a_{\mu}^{SUSY} \equiv a_{\mu}^{exp} - a_{\mu}^{SM} = (29.5 \pm 8.8) \times 10^{-10}$$

• B Physics

Cosmological constraints, in particular from WMAP and the relic density

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	000	O
SUSY C	onstraints			

- Collider limits
- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$\Delta a_{\mu} \equiv a_{\mu}^{SUSY} \equiv a_{\mu}^{exp} - a_{\mu}^{SM} = (29.5 \pm 8.8) \times 10^{-10}$$

- B Physics
- Cosmological constraints, in particular from WMAP and the relic density

Introduction 0●0000	$B \rightarrow X_s \gamma$	SuperIso	Results 000	Conclusion O
SUSY Cor	nstraints			

- Collider limits
- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$\Delta a_\mu \equiv a_\mu^{SUSY} \equiv a_\mu^{exp} - a_\mu^{SM} = (29.5\pm8.8) imes10^{-10}$$

- B Physics
- Cosmological constraints, in particular from WMAP and the relic density

Introduction 0●0000	$B \rightarrow X_s \gamma$	SuperIso	Results 000	Conclusion O
SUSY Cor	nstraints			

- Collider limits
- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$\Delta a_\mu \equiv a_\mu^{SUSY} \equiv a_\mu^{exp} - a_\mu^{SM} = (29.5\pm8.8) imes10^{-10}$$

- B Physics
- Cosmological constraints, in particular from WMAP and the relic density

Introduction 0●0000	$B \rightarrow X_s \gamma$	SuperIso	Results 000	Conclusion O
SUSY Cor	nstraints			

- Collider limits
- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$\Delta a_\mu \equiv a_\mu^{SUSY} \equiv a_\mu^{exp} - a_\mu^{SM} = (29.5\pm8.8) imes10^{-10}$$

- B Physics
- Cosmological constraints, in particular from WMAP and the relic density

Introduction 0●0000	$B \rightarrow X_s \gamma$	SuperIso	Results 000	Conclusion O
SUSY Cor	nstraints			

- Collider limits
- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$\Delta a_\mu \equiv a_\mu^{SUSY} \equiv a_\mu^{exp} - a_\mu^{SM} = (29.5\pm8.8) imes10^{-10}$$

- B Physics
- Cosmological constraints, in particular from WMAP and the relic density

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000		O
B Physics				

A good strategy to find the information on SUSY particles would be

- to look at where the SM contributions are vanishingly small,
- to study processes for which QCD corrections are known with high accuracy
- and branching ratios can be measured precisely.

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000		O
B Physics				

A good strategy to find the information on SUSY particles would be

- to look at where the SM contributions are vanishingly small,
- to study processes for which QCD corrections are known with high accuracy
- and branching ratios can be measured precisely.

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000		O
B Physics				

A good strategy to find the information on SUSY particles would be

- to look at where the SM contributions are vanishingly small,
- to study processes for which QCD corrections are known with high accuracy
- and branching ratios can be measured precisely.

 \Rightarrow Rare B decays are IDEAL CHOICES for that!

Introduction 000000	$B \rightarrow X_s \gamma$ 0000	SuperIso	Results 000	Conclusion O
Constrain	ts from R Phys	sics		

- $b \rightarrow s\gamma$ transition: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code SuperIso

Introduction 000000	$B \rightarrow X_s \gamma$ 0000	SuperIso	Results 000	Conclusion O
Constrain	ts from R Phys	sics		

- $b \rightarrow s \gamma$ transition: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code SuperIso

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	000	O
Effective	Hamiltonian			

The calculation of $b\to s\gamma$ observables begins with introducing an effective Hamiltonian:

$$\mathcal{H}_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{ts}^{*} V_{tb} \sum_{i=1}^{8} C_{i}(\mu) O_{i}(\mu)$$

$$O_{1} = (\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}) (\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}) \qquad O_{2} = (\bar{s}_{L} \gamma_{\mu} c_{L}) (\bar{c}_{L} \gamma^{\mu} b_{L})$$

$$O_{3} = (\bar{s}_{L} \gamma_{\mu} b_{L}) \sum_{q} (\bar{q} \gamma^{\mu} q) \qquad O_{4} = (\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}) \sum_{q} (\bar{q} \gamma^{\mu} T^{a} q)$$

$$O_{5} = (\bar{s}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} b_{L}) \sum_{q} (\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q)$$

$$O_{6} = (\bar{s}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} b_{L}) \sum_{q} (\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q)$$

$$O_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} b_{R}) F_{\mu\nu} \qquad O_{8} = \frac{g}{16\pi^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} T^{a} b_{R}) G_{\mu\nu}^{a}$$

프 🖌 🛪 프 🕨

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
00000●	0000		000	O
Wilson Co	pefficients			

Two main steps:

• Calculating $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$ by requiring matching between the effective and full theories

$$C_i^{eff}(\mu) = C_i^{(0)eff}(\mu) + rac{lpha_s(\mu)}{4\pi}C_i^{(1)eff}(\mu) + \cdots$$

• Evolving the $C_i^{e\!f\!f}(\mu)$ to scale $\mu \sim m_b$ using the RGE:

$$\mu \frac{d}{d\mu} C_i^{\text{eff}}(\mu) = C_j^{\text{eff}}(\mu) \gamma_{ji}^{\text{eff}}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{eff}(\mu)$:

$$\hat{\gamma}^{\text{eff}}(\mu) = \frac{\alpha_s(\mu)}{4\pi} \hat{\gamma}^{(0)\text{eff}} + \frac{\alpha_s^2(\mu)}{(4\pi)^2} \hat{\gamma}^{(1)\text{eff}} + \cdots$$

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	000	O
$b ightarrow s \gamma$ tr	ransitions			

Contributing loops:

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
	000			
Inclusive Branching ratio				
Inclusive Dren	ching ratio			

Inclusive Branching ratio

$$\mathcal{B}[\bar{B} \to X_s \gamma]_{E_{\gamma} > E_0} = \mathcal{B}[\bar{B} \to X_c e \bar{\nu}]_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
	00 00			
Inclusive Branching ratio				

$$\mathcal{B}[\bar{B} \to X_s \gamma]_{E_{\gamma} > E_0} = \mathcal{B}[\bar{B} \to X_c e \bar{\nu}]_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e \bar{\nu}]}{\Gamma[\bar{B} \to X_u e \bar{\nu}]}$$

・ロト (雪) (手) (中) (日)

PHOTON 09

Nazila Mahmoud

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion	
000000	• 0 00	00000	000	0	
Inclusive Branching ratio					
Inclusive Brar	nching ratio	0			

$$\mathcal{B}[\bar{B} \to X_s \gamma]_{E_{\gamma} > E_0} = \mathcal{B}[\bar{B} \to X_c e \bar{\nu}]_{\exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e \bar{\nu}]}{\Gamma[\bar{B} \to X_u e \bar{\nu}]}$$

$$P(E_0) = P^{(0)}(\mu_b) + \alpha_s(\mu_b) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0, \mu_b) \right] + \alpha_s^2(\mu_b) \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0, \mu_b) + P_3^{(2)}(E_0, \mu_b) \right] + \mathcal{O} \left(\alpha_s^3(\mu_b) \right)$$

・ロト (雪) (手) (中) (日)

Introduction	$B \rightarrow X_s \gamma$ $\bullet \circ \circ \circ$	SuperIso	Results	Conclusion O
Inclusive Branching ratio	0			
Inclusive R	ranching ratio)		

F

Misiak and Steinhauser, Nucl. Phys. B764 (2007)

999

2

《口》《圖》《臣》《臣》

Introduction	$\begin{array}{c} B \to X_s \gamma \\ \circ \bullet \circ \circ \end{array}$	SuperIso 00000	Results	Conclusion O
Inclusive Branching ra	tio			
Inclusive E	Branching ratio)		

• Theoretical values for the SM:

NLO (Gambino & Misiak '02): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.60 \pm 0.30) \times 10^{-4}$ NNLO (Misiak & Steihauser '07): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$ or (Becher & Neubert '07): $\mathcal{B}[\bar{B} \to X_s \gamma] = (2.98 \pm 0.26) \times 10^{-4}$ or (Gambino & Giordano '08): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.30 \pm 0.24) \times 10^{-4}$

• Experimental values:

PDG 2002: $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.30 \pm 0.40) \times 10^{-4}$ HFAG 2008: $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.52 \pm 0.25) \times 10^{-4}$

Big changes in both the theoretical and experimental values!

Allowed Region: $2.15 \times 10^{-4} < \mathcal{B}[\bar{B} \rightarrow X_s \gamma] < 4.89 \times 10^{-4}$

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
	0000			
Isospin Asymmetry				
Icocnin Acu	mmotini			

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^- \to K^{*-}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^- \to K^{*-}\gamma)}$$

・ロト (雪) (手) (中) (日)

Introduction	$\begin{array}{c} B \to X_s \gamma \\ \circ \circ \bullet \circ \end{array}$	SuperIso 00000	Results	Conclusion O
Isospin Asymmetry				
Isospin Asym	metry			

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) - \Gamma(B^- \to K^{*-} \gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) + \Gamma(B^- \to K^{*-} \gamma)}$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

PHOTON 09

$$\Delta_{0-}=\operatorname{Re}(b_d-b_u).$$

Nazila Mahmoudi

Introduction	$\begin{array}{c} B \to X_s \gamma \\ \circ \circ \bullet \circ \end{array}$	SuperIso 00000	Results 000	Conclusion O
Isospin Asymmetry				
Isospin Asy	/mmetrv			

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^- \to K^{*-}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^- \to K^{*-}\gamma)}$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

$$\Delta_{0-}=\operatorname{Re}(b_d-b_u).$$

$$b_{q} = \frac{12\pi^{2}f_{B} Q_{q}}{m_{b} T_{1}^{B \to K^{*}} a_{7}^{c}} \left(\frac{f_{K^{*}}^{\perp}}{m_{b}} K_{1} + \frac{f_{K^{*}} m_{K^{*}}}{6\lambda_{B} m_{B}} K_{2}\right)$$

Introduction	$B \to X_s \gamma$ $\circ \circ \circ \circ$	SuperIso	Results	Conclusion O
Isospin Asymmetry				
Isospin Asv	mmetrv			

$$b_{q} = \frac{12\pi^{2} f_{B} Q_{q}}{m_{b} T_{1}^{B \to K^{*}} a_{7}^{c}} \left(\frac{f_{K^{*}}^{\perp}}{m_{b}} K_{1} + \frac{f_{K^{*}} m_{K^{*}}}{6\lambda_{B} m_{B}} K_{2} \right)$$
$$a_{7}^{c} = C_{7} + \frac{\alpha_{s}(\mu)C_{F}}{4\pi} \Big(C_{1}(\mu)G_{1}(s_{p}) + C_{8}(\mu)G_{8} \Big) + \frac{\alpha_{s}(\mu_{h})C_{F}}{4\pi} \Big(C_{1}(\mu_{h})H_{1}(s_{p}) + C_{8}(\mu_{h})H_{8} \Big)$$

▲□▶ ▲圖▶ ▲重▶ ▲重▶ → 重 → のへで

Introduction	$\begin{array}{c} B \to X_s \gamma \\ \circ \circ \bullet \circ \end{array}$	SuperIso 00000	Results	Conclusion O
Isospin Asymmetry				
Isospin Asv	vmmetrv			

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) - \Gamma(B^- \to K^{*-} \gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) + \Gamma(B^- \to K^{*-} \gamma)}$$

$$\Delta_{0-}=\operatorname{Re}(b_d-b_u).$$

$$b_{q} = \frac{12\pi^{2} f_{B} Q_{q}}{m_{b} T_{1}^{B \to K^{*}} a_{7}^{c}} \left(\frac{f_{K^{*}}^{\perp}}{m_{b}} K_{1} + \frac{f_{K^{*}} m_{K^{*}}}{6\lambda_{B} m_{B}} K_{2} \right)$$
$$a_{7}^{c} = C_{7} + \frac{\alpha_{s}(\mu)C_{F}}{4\pi} \Big(C_{1}(\mu)G_{1}(s_{p}) + C_{8}(\mu)G_{8} \Big) + \frac{\alpha_{s}(\mu_{h})C_{F}}{4\pi} \Big(C_{1}(\mu_{h})H_{1}(s_{p}) + C_{8}(\mu_{h})H_{8} \Big)$$

< 口 > < 同

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539, 227 (2002) Bosch and Buchalla, Nucl. Phys. B621, 459 (2002) Ali and Parkhomenko, Eur. Phys. J. C23, 89 (2002)

< ∃ >

Introduction 000000	$\begin{array}{c} B \to X_s \gamma \\ \circ \circ \circ \bullet \end{array}$	SuperIso	Results 000	Conclusion ○
Isospin Asymmetry				
Experimental of	data			

BABAR

 $\Delta_{0-} = +0.029 \pm 0.019(\textit{stat}) \pm 0.016(\textit{syst}) \pm 0.018(R^{+/0})$

Aubert et al. (BABAR Collaboration) arXiv:0808.1915

BELLE

$$\Delta_{0+} = +0.012 \pm 0.044(\textit{stat}) \pm 0.026(\textit{syst})$$

Nakao et al. (BELLE Collaboration) Phys. Rev. D69 (2004)

Allowed Region: $-0.017 < \Delta_{0-} < 0.089$

・聞き ・ ヨキ・ ・ ヨキー

Introduction	$\begin{array}{c} B \to X_{\rm s} \gamma \\ \circ \circ \circ \circ \end{array}$	SuperIso	Results	Conclusion
000000		●0000	000	O
Superlso v2.5				

SuperIso is a public C program

- dedicated to the flavor physics observable calculations
- aimed to provide to everyone the possibility to do the calculations in different models
- based on the most precise calculations publicly available in the literature

F. Mahmoudi, arXiv:0710.2067, Comput. Phys. Commun. 178 (2008)

F. Mahmoudi, arXiv:0808.3144, Comput. Phys. Commun. (2009)

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	o●ooo	000	○

1) Penguin mediated observables

- inclusive branching ratio of $B \to X_s \gamma$
- isospin asymmetry of $B \to K^* \gamma$

Neutral Higgs mediated observable

• branching ratio of $B_s \rightarrow \mu^+ \mu^-$

3) Charged Higgs mediated observables

- branching ratio of $B \rightarrow \tau \nu$
- branching ratio of $B \rightarrow D \tau \nu$
- branching ratio of $K \rightarrow \mu \nu$
- branching ratios of $D_s \rightarrow \tau \nu / \mu \nu$

Introduction	$\begin{array}{c} B \to X_s \gamma \\ \circ \circ \circ \circ \end{array}$	SuperIso	Results	Conclusion
000000		o●ooo	000	O
	21			

1) Penguin mediated observables

- inclusive branching ratio of $B \rightarrow X_s \gamma$
- isospin asymmetry of $B o K^* \gamma$

2) Neutral Higgs mediated observable

• branching ratio of $B_s
ightarrow \mu^+ \mu^-$

3) Charged Higgs mediated observables

- branching ratio of $B \rightarrow \tau \nu$
- branching ratio of $B \rightarrow D \tau \nu$
- branching ratio of $K \rightarrow \mu \nu$
- branching ratios of $D_s \rightarrow \tau \nu / \mu \nu$

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	o●ooo	000	○
	<u></u>			

1) Penguin mediated observables

- inclusive branching ratio of $B \to X_s \gamma$
- isospin asymmetry of $B \to K^* \gamma$

2) Neutral Higgs mediated observable

• branching ratio of $B_s
ightarrow \mu^+ \mu^-$

3) Charged Higgs mediated observables

- branching ratio of $B \rightarrow \tau \nu$
- branching ratio of $B \rightarrow D \tau \nu$
- branching ratio of $K \rightarrow \mu \nu$
- branching ratios of $D_s \rightarrow \tau \nu / \mu \nu$

Introduction	$\begin{array}{c} B \to X_{\rm s} \gamma \\ \circ \circ \circ \circ \end{array}$	SuperIso	Results	Conclusion
000000		oo●oo	000	O

4) Other observables

- collider direct limits
- muon anomalous magnetic moment $(g-2)_{\mu}$
- dark matter relic density (SuperIso Relic, with A. Arbey)

Introduction	$B o X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	000●0	000	O
Implement	ed models			

General Two Higgs Doublet Model

• Type I, Type II, Type III and Type IV

MSSM (with Minimal Flavor Violation)

automatic interfaces with Softsusy and Isajet available for:

• CMSSM, NUHM, AMSB and GMSB

NMSSM

automatic interface with NMSSMTools available for:

• CNMSSM, NNUHM and NGMSB

Introduction	$B o X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	000●0	000	O
Implement	ed models			

General Two Higgs Doublet Model

Type I, Type II, Type III and Type IV

CMSSM, NUHM, AMSB and GMSB

CNMSSM, NNUHM and NGMSB

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
	0000	000●0	000	O
Implemented	models			

General Two Higgs Doublet Model

• Type I, Type II, Type III and Type IV

MSSM (with Minimal Flavor Violation)

automatic interfaces with Softsusy and Isajet available for:

• CMSSM, NUHM, AMSB and GMSB

NMSSM

automatic interface with NMSSMTools available for:

• CNMSSM, NNUHM and NGMSB

Introduction	$B o X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	000●0	000	O
Implement	ed models			

General Two Higgs Doublet Model

• Type I, Type II, Type III and Type IV

MSSM (with Minimal Flavor Violation)

automatic interfaces with Softsusy and Isajet available for:

• CMSSM, NUHM, AMSB and GMSB

NMSSM

automatic interface with NMSSMTools available for:

• CNMSSM, NNUHM and NGMSB

00000	$B \rightarrow \lambda_s \gamma$ 0000	00000	000	⊂ Conclusion
Download	SuperIso			
	Synania	Calculation of flavor physics observ	ables in supersymmetry	
2p3.fr	Superiso → Description → Manual Superiso Relic	Superiso is a program for calculation of flavor Standard Model (MSSM). Superiso, in addition purpose of the first version, incorporates other NNLO, the branching ratio of Bs -> mu+ mu-, th and the branching ratio of K -> mu nu. It also co	physics observables in the minimal support n to the isospin asymmetry of $B \rightarrow K^*$ flavor observables such as the branchi he branching ratio of $B \rightarrow$ tau nu, the bra- mputes the muon anomalous magnetic n	versymmetric extension of the gamma, which was the main ing ratio of B -> Xs gamma at anching ratio of B -> D tau nu noment (g-2).
so.in	→ Description → Manual	For the isospin asymmetry, the program cal Hamiltonian approach and within the QCD facto to constrain supersymmetric parameter spaces.	culates the NLO supersymmetric cont rization method. Isospin asymmetry is a	ributions using the effective particularly useful observable
	Download	Superiso uses a SUSY Les Houches Accord automatically by the program via a call to SOFT	I file (SLHA1 or SLHA2) as input, whi SUSY or ISAJET, or provided by the user	ich can be either generated r.
sup	 → Supertso Relic → Supertso Relic shared 	Superiso is able to perform the calculations a mSUGRA, NUHM, AMSB and GMSB.	utomatically in different supersymmetry	breaking scenarios, such as
		Manual		
b:/		The latest version of the manual can	be found <u>here</u> (05/03/2009).	
ltt		For more information:		
<u> </u>		 F. Mahmoudi, arXiv:0710.3791 [hep-ph], M.R. Ahmady and F. Mahmoudi, hep-ph/ A. Arbey and F. Mahmoudi, arXiv:0803.01 D. Eriksson, F. Mahmoudi and O. Stål, ar 	JHEP12 (2007), 026 3608212, Phys. Rev. D75 (2007), 01500 741 [hep-ph], Phys. Lett. B 669 (2008), 4 Xiv.0808.3551 [hep-ph], JHEP11 (2008),	<u>7</u> 16 1035

• A.G. Akeroyd and F. Mahmoudi, arXiv:0902.2393 [hep-ph], JHEP04 (2009), 121

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	●00	O
Results				

mSUGRA

M. Ahmady & F. Mahmoudi, Phys. Rev. D75 (2007)

문 문 문

< 🗇 > <

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	●00	O
Results				

mSUGRA

NUHM

< 17 ▶

< ∃ >

Introduction	$\begin{array}{c} B \to X_s \gamma \\ \circ \circ \circ \circ \end{array}$	SuperIso	Results	Conclusion
000000		00000	0●0	O
Results				

AMSB

F. Mahmoudi, JHEP 0712, 026 (2007)

2

< ∃⇒

< □ > < □

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	0●0	O
Results				

AMSB

GMSB

F. Mahmoudi, JHEP 0712, 026 (2007)

2

< ∃⇒

< 17 > <

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
000000	0000	00000	00●	O
Results				

NUHM

A. Akeroyd & F. Mahmoudi, JHEP 0904, 121 (2009)

Nazila Mahmoudi

PHOTON 09

æ

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
				•

Conclusion

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- $b \rightarrow s \gamma$ transitions and in particular isospin asymmetry provide valuable information

Perspectives

New observables:

- forward-backward asymmetry in $B \to K^* \ell^+ \ell^-$
- $B^0_{(s,d)} \bar{B}^0_{(s,d)}$ mixings: $\Delta M_{B_{s,d}}$

New Models:

- Non Minimal Flavor violation
- CP violation

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion
				•

Conclusion

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- $b \rightarrow s \gamma$ transitions and in particular isospin asymmetry provide valuable information

Perspectives

New observables:

- forward-backward asymmetry in $B \to K^* \ell^+ \ell^-$
- $B^0_{(s,d)} \bar{B}^0_{(s,d)}$ mixings: $\Delta M_{B_{s,d}}$

New Models:

- Non Minimal Flavor violation
- CP violation

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion

・ロト ・日・・日・・日・・ つんぐ

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion

Backup

Observable	Combined experimental value	95% C.L. Bound
${\rm BR}(B\to X_s\gamma)$	$(3.52\pm0.23\pm0.09)\times10^{-4}$	$2.15 \times 10^{-4} \leq \mathrm{BR}(b \rightarrow s \gamma) \leq 4.89 \times 10^{-4}$
$\Delta_0(B\to K^*\gamma)$	$(3.1 \pm 2.3) \times 10^{-2}$	$-1.7\times 10^{-2} < \Delta_0 < 8.9\times 10^{-2}$
$\frac{\mathrm{BR}(B_u \to \tau \nu_\tau)}{R_{\tau \nu_\tau}}$	$\begin{array}{c} (1.41\pm0.43)\times10^{-4} \\ 1.28\pm0.38 \end{array}$	$0.39 \times 10^{-4} < BR(B_u \rightarrow \tau \nu_{\tau}) < 2.42 \times 10^{-4}$ $0.52 < R_{\tau \nu_{\tau}} < 2.04$
$\begin{array}{c} {\rm BR}(B\to D^0\tau\nu_\tau) \\ \\ \xi_{D\ell\nu} \end{array}$	$\begin{array}{c} (8.6\pm2.4\pm1.1\pm0.6)\times10^{-3}\\ \\ 0.416\pm0.117\pm0.052 \end{array}$	$\begin{split} 2.9\times 10^{-3} < {\rm BR} \big(\mathcal{B} \to \mathcal{D}^0 \tau \nu_\tau \big) < 14.2\times 10^{-3} \\ 0.151 < \xi_{D\ell\nu} < 0.681 \end{split}$
${\rm BR}(B_s\to\mu^+\mu^-)$	$< 5.8 \times 10^{-8}$	$\mathrm{BR}(B_s \rightarrow \mu^+ \mu^-) < 6.6 \times 10^{-8}$
$\frac{\mathrm{BR}(K \to \mu\nu)}{\mathrm{BR}(\pi \to \mu\nu)}$ $R_{\ell 23}$	$\begin{array}{c} 0.6358 \pm 0.0011 \\ 1.004 \pm 0.007 \end{array}$	$0.6257 < rac{{ m BR}({\cal K} o \mu u)}{{ m BR}(\pi o \mu u)} < 0.6459$ $0.990 < R_{\ell 23} < 1.018$
$\frac{\mathrm{BR}(D_s \to \tau \nu_\tau)}{\mathrm{BR}(D_s \to \mu \nu_\mu)}$	$\begin{array}{c} (5.7\pm0.4)\times10^{-2}\\ \\ 5.8\pm0.4\times10^{-3} \end{array}$	$\begin{split} & 4.8 \times 10^{-2} < \mathrm{BR}(D_s \to \tau \nu_\tau) < 6.6 \times 10^{-2} \\ & 4.9 \times 10^{-3} < \mathrm{BR}(D_s \to \mu \nu_\mu) < 6.7 \times 10^{-3} \end{split}$
δa_{μ}	$(2.95\pm 0.88)\times 10^{-9}$	$1.15 imes 10^{-9} < \delta a_{\mu} < 4.75 imes 10^{-9}$

5990

2

Introduction	$B \rightarrow X_s \gamma$	SuperIso	Results	Conclusion

SuperIso

3