Anomalous couplings in $\gamma\gamma \to W^+W^-$ at LHC and ILC

A. v. Manteuffel

M. Manitias, O. Nachtmann, F. Nagel, M. Pospischil, A. Utermann

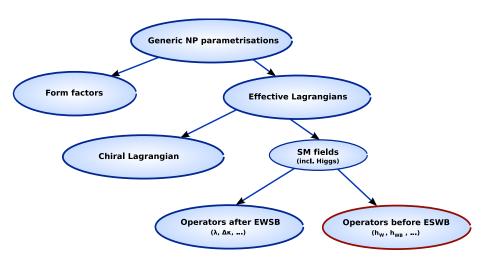
Universität Heidelberg, Universität Zürich

Photon 2009 DESY Hamburg, 11. 5. 2009

The Effective Lagrangian approach

Standard Model:

- Standard Model (SM) γ, W, Z couplings fixed by: gauge invariance & renormalisability
- deviations ⇒ signal for new physics (NP)



Generic NP parametrisation:

- assume $\Lambda_{NP} \gg v \approx 246 \text{ GeV}$
- general effective anomalous couplings at low E
- discovery of deviations, exclusion of models
 ⇒ multi-purpose interface: experiment ↔ theory

Effective Lagrangian before EWSB

- start from SM Lagrangian (incl. Higgs doublet φ)
- add all higher dim. operators which are
 - ▶ Lorentz-invariant
 - ► $SU(3) \times SU(2) \times U(1)$ invariant

$$\Rightarrow \quad \mathscr{L}_{\textit{eff}} = \mathscr{L}_0 + \underbrace{\mathscr{L}_1}_{\textit{dim 5 op.}} + \underbrace{\mathscr{L}_2}_{\textit{dim 6 op.}} + \dots$$

- imposing
 - equation of motion
 - lepton and baryon number conservation
 - \Rightarrow \mathscr{L}_1 : none, \mathscr{L}_2 : \propto 80 operators \ni 10 pure gauge/Higgs

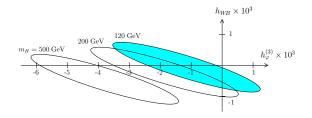
Buchmüller, Wyler (1986)

small number of couplings

Effective Lagrangian before EWSB

Gauge and gauge-Higgs anomalous couplings

• pure gauge and gauge-Higgs part: $\mathcal{L}_2 = \frac{1}{v^2} \sum h_i O_i$


$$\begin{split} O_{W} &= \epsilon_{ijk} \ W_{\mu}^{i\,\nu} \ W_{\nu}^{j\,\lambda} \ W_{\lambda}^{k\,\mu}, \\ O_{\varphi W} &= \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i} \ W^{i\,\mu\nu}, \\ O_{\varphi B} &= \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) \ B_{\mu\nu} B^{\mu\nu}, \\ O_{WB} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i} B^{\mu\nu}, \\ O_{WB} &= \left(\varphi^{\dagger} \tau^{i} \varphi \right) \ W_{\mu\nu}^{i} B^{\mu\nu}, \\ O_{\emptyset B} &= \left(\varphi^{\dagger} \tau^{i} \varphi \right) \ W_{\mu\nu}^{i} B^{\mu\nu}, \\ O_{\emptyset B}^{(1)} &= \left(\varphi^{\dagger} \varphi \right) (\mathcal{D}_{\mu} \varphi)^{\dagger} \left(\mathcal{D}^{\mu} \varphi \right), \\ O_{\emptyset}^{(3)} &= \left(\varphi^{\dagger} \mathcal{D}_{\mu} \varphi \right)^{\dagger} \left(\varphi^{\dagger} \mathcal{D}^{\mu} \varphi \right). \end{split}$$

• 10 dimensionless anomalous couplings h_i , where 4 ops. CP odd

$$h_i \sim \mathcal{O}\left(v^2/\Lambda_{NP}^2\right),$$

- EWSB: anomalous contrib. to kinetic and mass terms of gauge bosons
 - kinetic: $h_{\varphi W}$, $h_{\varphi B}$, h_{WB}
 - mass: $h_{\varphi}^{(1)}$, $h_{\varphi}^{(3)}$
 - \Rightarrow physical W^{\pm} , Z, γ modified wrt. SM
- Z decays sensitive to anom. couplings: $h_{\varphi}^{(3)}$, h_{WB} (scheme P_Z)
- approx. relations to $U(1)_{em}$ effect. Lagr.: $\lambda \propto h_W$, $\Delta \kappa \propto h_{WB}$, . . .

Present bounds on CP conserving couplings (P_Z) from LEP1, LEP2, SLD, and Tevatron:

	TGCs				
	h	δh			
h _w	0.068	0.081			
$h_{\widetilde{W}\!B}$	0.033	0.084			

	$s_{\rm eff}^2, \Gamma_Z, \sigma_{\rm had}^0, R_\ell^0, m_W, \Gamma_W, {\sf TGCs}$								
m_H		120 GeV	200 GeV	500 GeV	$\delta h \times 10^3$				
hw	$\times 10^3$	-62.4	-62.5	-62.8	36.3	1	-0.007	0.008	
$h_{W\!B}$	$\times 10^3$	-0.06	-0.22	-0.45	0.79		1	-0.88	
$h_{\varphi}^{(3)}$	$\times 10^3$	-1.15	-1.86	-3.79	2.39			1	

Selected processes at ILC and LHC

• $e^+e^- \rightarrow Z$ (Giga Z) highly sensitive to (P_Z) :

$$h_{WB}, h_{\varphi}^{(3)}$$

• $e^+e^- \rightarrow W^+W^-$ sensitive to (P_W) :

$$h_W, h_{W\!B}, h_{\varphi}^{(3)}, h_{\tilde{W}}, h_{\tilde{W}B}$$

(3 CP conserving, 2 CP violating)

• $\gamma \gamma \rightarrow W^+ W^-$ sensitive to (P_W) :

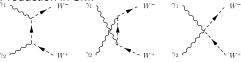
$$h_W, \ h_{W\!B}, \ h_{\tilde{W}}, \ h_{\tilde{W}\!B}, (s_1^2 h_{\varphi W} + c_1^2 h_{\varphi B}), \ (s_1^2 h_{\varphi \tilde{W}} + c_1^2 h_{\varphi \tilde{B}})$$

(3 CP conserving, 3 CP violating)

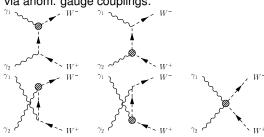
ullet of these, only $\gamma\gamma$ process allows direct measurement of:

where
$$s_1^2 \equiv rac{e^2}{4\sqrt{2}G_F m_W^2}, \quad c_1^2 \equiv 1-s_1^2$$

all processes together: 7 out of 10 indep. couplings observable


Feynman diagrams

Consider


$$\gamma\gamma
ightarrow W^+W^-
ightarrow far f\, far f$$

in narrow-width-approximation.

via anom. gauge couplings:

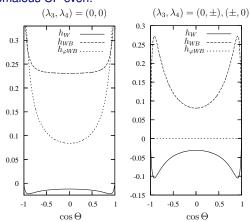
via anom. $\gamma \gamma H$ coupling:

Disentanglement of anomalous contributions

• specific γ -enhancements for anom. amplitudes, W pol. dependent

 $d\sigma_i/d\cos\Theta[pb]$

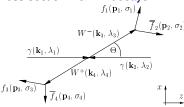
• more information via angular distributions, e.g.:


$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Theta} = \frac{\mathrm{d}\sigma_{\text{SM}}}{\mathrm{d}\cos\Theta} + \sum_{i} h_{i} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}\cos\Theta} + \mathcal{O}(\hbar^{2})$$

Standard Model:

[qd] ⊖s∞ p/ρp

10^{4} Sum 10^{3} 10^{2} 10 0.1 10^{-2} 10^{-3} 10^{-4} 0 $\cos \Theta$

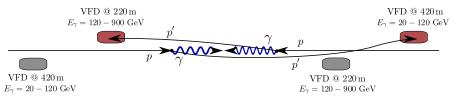

Anomalous CP even:

Optimal observables

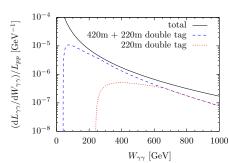
How to measure anom. coupl. with best statistical accuracy?

• full information: diff. cross section incl. W decays

- access via optimal observables (Atwood & Soni, Davier et al., Diehl & Nachtmann)
 - expand fully diff. cross section:


$$rac{\mathrm{d}\sigma}{\mathrm{d}\phi} = \mathcal{S}_0(\phi) + \sum_i h_i \mathcal{S}_{1i}(\phi) + \mathcal{O}(h^2)$$
 where $\phi = \text{phase space variables}$

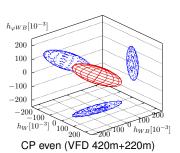
▶ statist. optimal observables for small *h_i* (wo/ rate info):

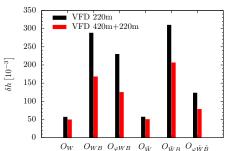

$$\mathcal{O}_i \equiv rac{\mathcal{S}_{1i}(\phi)}{\mathcal{S}_0(\phi)}$$

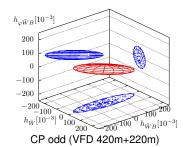
• access to $\mathcal{O}(h)$ contrib. for all h_i (total cross section $\mathcal{O}(h^2)$ for CP odd)

Elastic photon production at the LHC

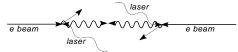
- almost real photons by elastic radiation off p
- tagging by very forward dectectors (VFD): 120 GeV $\leq E_{\gamma} \leq$ 900 GeV (@220m) 20 GeV $\leq E_{\gamma} \leq$ 900 GeV (@220m+420m)
- ullet $\gamma\gamma$ CMS known via double tag
- $d\sigma_{pp} \approx d\sigma_{\gamma\gamma} dN_1 dN_2$ (EPA)

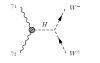



Results: Sensitivities at the LHC

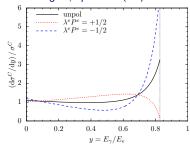

preliminary

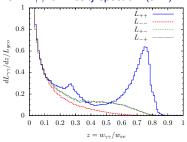
- $\int L_{pp} = 30 \text{ fb}^{-1}$
- both charged leptons: $|\eta| \le 2.5$, $p_T \ge 10$ GeV
- m_{Higgs} = 120 GeV
- CP even-odd corr. vanish





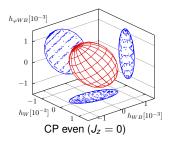
Photon collider at the ILC


Photons via Compton backscattering of laser on *e* beam

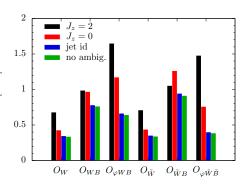

- high lumi for hard photons
- higher energies through polarisation
- $\gamma\gamma$ CMS statistically distrib.
- beyond LO: multiple scatt., nonlin., ...
- here: energy / polarisation distrib.
 helps to disentangle contrib.
 e.g. |J_z| = 2 "switches off" Higgs prod.

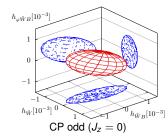
norm. single γ spectrum (LO):

norm. $\gamma\gamma$ luminosity spectrum (sim.):



simulation by Telnov


Results: Sensitivities at the ILC


semi-leptonic channels

- semi-leptonic, no jet id
 ⇒ ambiguities (ν, jet)
- $\int L_{ee} = 500 \text{ fb}^{-1}$;
- m_{Higgs} = 120 GeV
- cuts on observed fermions:
 - ▶ energy ≥ 10 GeV
 - ▶ angle wrt. beam ≥ 10°
 - ▶ angle betw. ferm. ≥ 25°

preliminary

Comparison of sensitivities

preliminary

	present	LHC estimates	ILC estimates				
	LEP, SLD,	$\gamma\gamma o WW$	ee → WW (*)	$\gamma\gamma o WW$			
	Tevatron (*)	elast., lept., $\int L = 30 fb^{-1}$	sl, $\int L = 500 fb^{-1}$	sl, $J_Z = 0$, $\int L = 500 fb^{-1}$			
	$h_i [10^{-3}]$	$\delta h_i [10^{-3}]$	$\delta h_i [10^{-3}]$	$\delta h_i [10^{-3}]$			
measurable CP conserving couplings:							
h_W	-69 ± 39	50	0.3	0.4			
h_{WB}	-0.06 ± 0.79	170	0.3	1.0			
$h_{\varphi WB}$	×	130	×	1.2			
$h_{arphi}^{(3)}$	-1.15 ± 2.39	×	36	×			
measurable CP violating couplings:							
h _w	68 ± 81	50	0.3	0.4			
$h_{\widetilde{W}B}$	33 ± 84	210	2.2	1.3			
h	×	80	×	0.8			

3 more anomalous couplings unaccessible by these methods:

$$h_{\varphi}^{(1)}, h_{\varphi WB}', h_{\varphi \tilde{W} \tilde{B}}'$$

(*) Nachtmann, Nagel, Pospischil

• best for h_{WB} , $h_{\varphi}^{(3)}$: Giga-Z

Summary

Gauge symmetric effective Lagrangian approach:

- generic NP parametrisation
- 10 anomalous gauge / gauge-Higgs couplings (6 CP cons., 4 CP viol.)
- LEP, SLD & Tevatron restrict 5 of them
- substantial improvements by ee → WW, Giga-Z at ILC

Normalised distributions for $\gamma \gamma \rightarrow WW$:

- access to 2 new anom. Higgs couplings (not in ee → WW)
- allows important cross checks with ee data
- LHC (elastic γ production): $\delta h \approx \mathcal{O}(10^{-1})$
- ILC (photon collider mode): $\delta h \approx \mathcal{O}(10^{-3})$