

Photon 2009

Leading theoretical uncertainties in the muon g-2

Gabriel López Castro Cinvestav, México

OUTLOOK

- SM prediction
- LO hadronic (e+e-)
- LO hadronic (τ)
- Final comments

Collaboration with: M. Davier, A. Höcker, B. Malaescu, X. Mo, G. Toledo, P. Wang, C. Yuan, Z. Zhang [DHLMMTWYZ (09)]

Accuracy: experiment

Muon magnetic moment:
$$\overrightarrow{\mu} = g \xrightarrow{e} \overrightarrow{s}$$
 (g=2 Dirac theory)

Anomalous moment:
$$q = \frac{g-2}{2}$$

Onderwater's talk

Final E821 assuming CPT

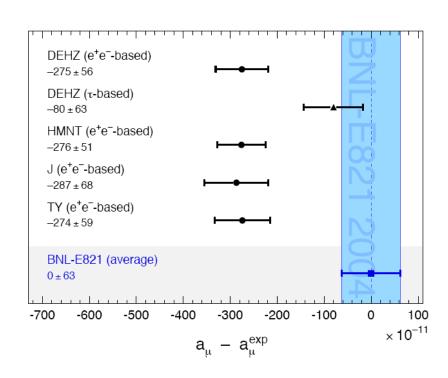
 $10^{11} \times Q_{u}^{exp} = 116592080 \pm 63$

±15

E969 goal:

- ♦ Sensitivity to New Physics
- ♦ Sensitivity to all SM interactions
- ◆ Insensitive to m_H, m_t
- ◆ Forced theory to similar accuracy
- ♦ Discrepancy with SM at 3.5σ

- ◆Force to improve theory in hadronic sector
- Could establish NP at
 > 6σ level


Miller, de Rafael & Lee Roberts, Rep.Part.Phys.70, (2007)

Accuracy: theory

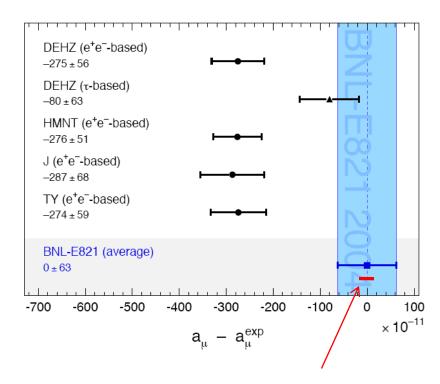
$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{had}$$

- Currently better than experimental accuracy
- Limited by photon-hadron interactions (HVP, L×L)
- Discrepancy in HVP
 e⁺e⁻ vs. τ based data

Circa 2008

Recent reviews: Miller, de Rafael & Lee Roberts, Rep.Part.Phys.70, (2007);

Jegerlehner & Nyffeler, arXiv:0902.3360;


Davier & Marciano, Ann. Rev. Nuc. P. Sci. (2004)

Accuracy: theory

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{had}$$

- Currently better than experimental accuracy
- Limited by photon-hadron interactions (HVP, L×L)
- Discrepancy in HVP
 e⁺e⁻ vs. τ based data

Circa 2008

Goal E969

Recent reviews: Miller, de Rafael & Lee Roberts, Rep.Part.Phys.70, (2007);

Jegerlehner & Nyffeler, arXiv:0902.3360;

Davier & Marciano, Ann. Rev. Nuc. P. Sci. (2004)

QED contribution

$$a_{\mu}^{QED} = 0.5 \left(\frac{\alpha}{\pi}\right)$$

Schwinger (1948)

•

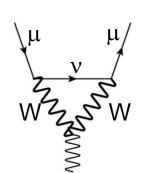
γ & lepton loops only

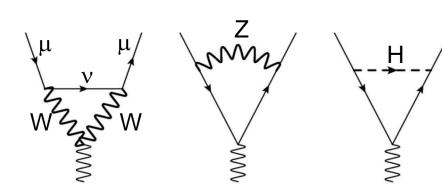
$$+0.765857410(27)\left(\frac{\alpha}{\pi}\right)^{2}$$

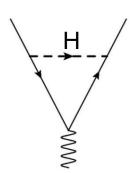
$$+24.05050964(87)\left(\frac{\alpha}{\pi}\right)^3$$

$$+130.9916(80)\left(\frac{\alpha}{\pi}\right)^4$$

$$+663(20)\left(\frac{\alpha}{\pi}\right)^5$$


Leading Log: Kinoshita-Nio (2006); Kataev (2006); Baikov et al (2008); Aoyama et al (2008)


Using α^{-1} =137.035999710(96) from measured \mathbf{Q}_{e} [Gabrielse et al (2006)]


$$10^{11} \times a_{\mu}^{QED} = 116584718.09 \pm 0.14_{O(\alpha^5)} \pm 0.04_{\alpha}$$

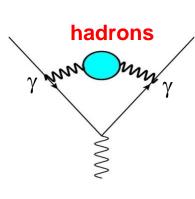
Electroweak contribution

Heavy weak bosons in loops

$$a_{\mu}^{EW} = \frac{G_F}{\sqrt{2}} \frac{m_{\mu}^2}{8\pi^2} \left[\frac{5}{3} + \frac{1}{3} \left(1 - 4\sin^2\theta_W \right)^2 + O\left(\frac{m_{\mu}^2}{m_{Z,H}^2} \log\left(\frac{m_{Z,H}^2}{m_{\mu}^2} \right) \right) \right]$$

$$-\frac{G_F}{\sqrt{2}} \frac{m_{\mu}^2}{8\pi^2} \left(\frac{\alpha}{\pi}\right) \left[155.5(4.0)_{m_H} (1.8)_{had.loops}\right] + O(10^{-12})$$

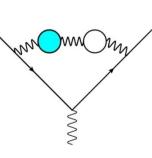
Czarnecki et al (95-02)

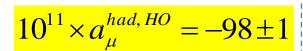

Czarnecki et al (03) Degrasi et al(03)

$$10^{11} \times a_{\mu}^{EW} = 154 \pm 2_{m_H} \pm 1_{had.loops}$$

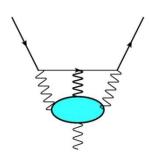
Hadronic contributions

$$a_{\mu}^{had} = a_{\mu}^{had, LO} + a_{\mu}^{had, HO} + a_{\mu}^{had, l \times l}$$


$$\alpha^{2} \qquad \alpha^{3} \qquad \alpha^{3}$$


1 HVP insertion;

~7000


accuracy :< 1% < 0.3%

1 HVP + γ, leptonic or another HVP loop

Hagiwara et al (2003)

More details in

Prades' talk

$$10^{11} \times a_{\mu}^{had, l \times l} = 105 \pm 26$$

Prades et al (2009)

Hadronic Leading order

Dispersion integral

$$a_{\mu}^{had,LO} = \frac{1}{3} \left(\frac{\alpha}{\pi} \right)^{2} \int_{4m^{2}}^{\infty} ds \, \frac{K(s)}{s} \, \frac{\sigma^{0}(e^{+}e^{-} \to hads)}{\sigma^{0}(e^{+}e^{-} \to \mu^{+}\mu^{-})}$$

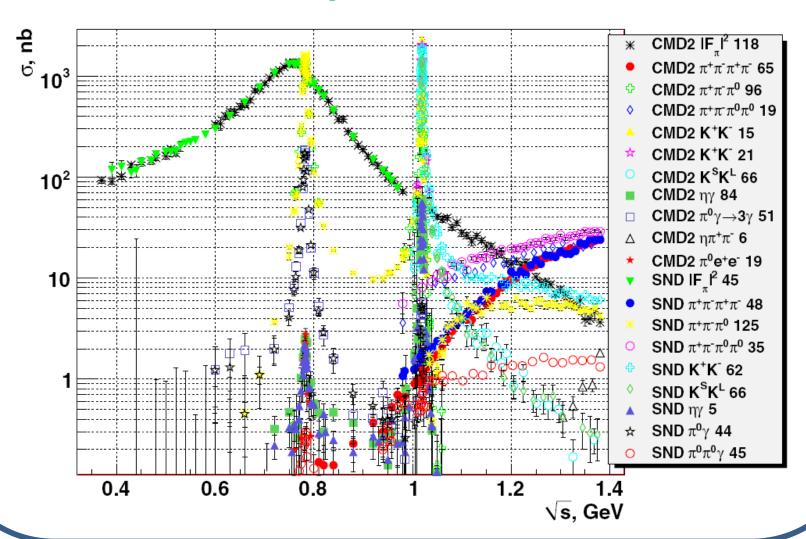
Bouchiat-Michel (61);

Gourdin-de Rafael (69)

QED kernel K(s) decreases with s: Low energies \rightarrow data High energies \rightarrow QCD

Importance of low energy data:

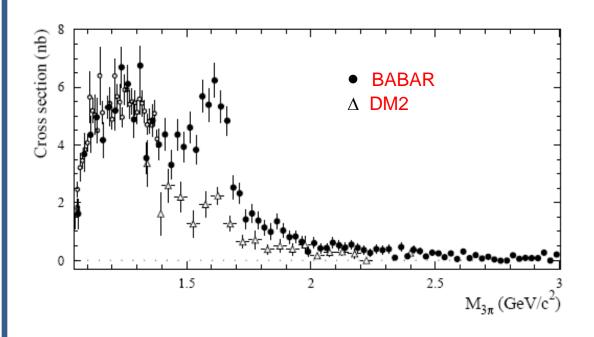
- 92% of $Q_{\mu}^{had, LO}$ comes from $\sqrt{s} < 1.8 \text{ GeV}$
- 73% of $a_{\mu}^{had, LO}$ comes from 2π (large ρ contribution)
- 63% of theoretical uncertainty comes 2π


Recent measurements of 2π channel

Exp.	Method	E _{cm} (GeV)	σ (%)	year
CMD-2	scan	0.37 - 0.52	0.7	2005 - 07
CDM-2	scan	0.60 - 0.97	0.6 - 0.8	11
CMD-2	scan	1.04 - 1.38	1.3 - 4.2	11
SND	scan	0.39 - 0.42	3.2	2005 - 06
SND	scan	0.43 - 0.97	1.3	11
KLOE	ISR	0.59 - 0.97	0.9	2005
KLOE	ISR	0.59 - 0.97	0.6	2008
BABAR	ISR	0.50 - 3.0	$0.56_{ ho}$	TAU08

Difficult to reach 0.3% required to match future E969

Novosibirsk CMD-2 & SND results

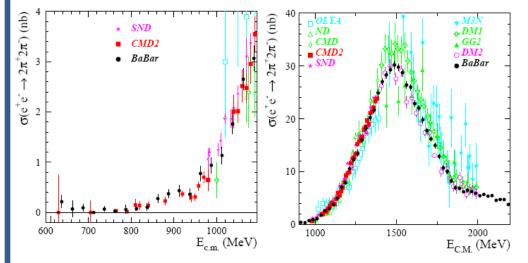


G. López Castro

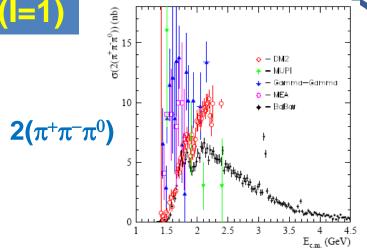
BABAR 3π channel (I=0), ISR

Aubert et al (2004)

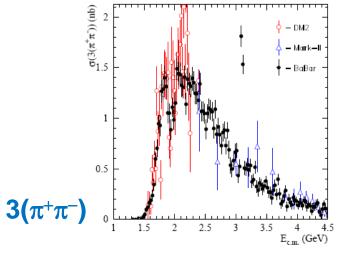
$$10^{11} \times \delta a_{\mu} = 24.5 \pm 2.6 \pm 0.3$$


$$32.5 \pm 0.9 \pm 0.1$$

BABAR data higher than DM2 above 1.4 GeV



Aubert et al (2005-2007)



Good agreement with CMD-2 & SND; better accuracy

$$\delta a_{\mu}$$
: (14 ± 3) \rightarrow (9 ± 1)

$$\delta a_{\mu}$$
: (1 ± 1) \longrightarrow (1.1 ± 0.2)

New evaluation: (1) including/excluding KLOE data

- (2) HVPtools dressed \rightarrow bare σ
- (3) Taylor expansion below 0.36 GeV

Channel	E (GeV)	$10^{11} \times a_{\mu}^{had,LO}$ (ee)		
2π , low exp	$2m_{\pi} - 0.36$	94.7 ± 1.0		DHLMMTWYZ (09)
2π	0.36-1.8	4926.3 ± 35.0		(00)
$\pi^+\pi^-2\pi^0$	≤1.8	$168.0\pm13.0\pm2.0_{rad}$		
$2\pi^+2\pi^-$	≤1.8	$131 \pm 4 \pm 0_{rad}$		■ Davier et al ('06~'07
OtherExc.+QCD	$2m_{\pi}-\infty$	$1564 \pm 19 \pm 4_{rad} \pm 7_{QCD}$		
Total	$2m_{\pi}-\infty$	6884(41)(19) _{rad} (7) _{QCD}	w/KLOE	
10101	$2m_{\pi}$	$6897(48)(19)_{rad}(7)_{QCD}$	wo/KLOE	

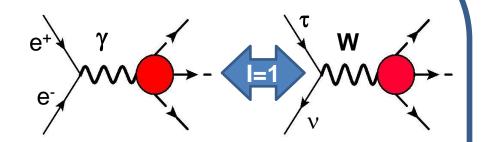
$$F_{\pi}(s) = 1 + \frac{1}{6} \langle r^2 \rangle_{\pi} s + c_1 s^2 + c_2 s^3$$

Summary of SM contributions and experiment

Contrib.	10¹¹× a ս
QED	116584718.09 ± 0.15
EW	154±2±1
had,HO	-98±1
$had, l \times l$	105 ± 26
E821	116592080 ± 63

Recent evaluations of had. (LO & I×I).

- Discrepancy > 3σ confirmed,
- Theory uncertainty dominated by LO hadronic contribs.


Calcul.	α _μ had,LO	\mathbf{Q}_{μ}^{SM}	$a_{\mu}^{exp} - a_{\mu}^{sm}$
<i>DEHZ</i> – 03	6963 ± 72	116591842±77	$238 \pm 99 [3.4\sigma]$
HMNT-03	6961±62	116591840 ± 67	$240 \pm 92 [2.6\sigma]$
<i>DEHZ</i> – 06	6909 ± 44	116591788±51	$292 \pm 81[3.6\sigma]$
<i>HMNT</i> – 06	6894 ± 46	116591773±53	$307 \pm 82 [3.7\sigma]$
J - 08	6923 ± 60	116591802 ± 65	$278 \pm 90 [3.1\sigma]$
DHYZ09	6884 ± 45	116591766±53	$317 \pm 82 [3.9\sigma]$
	6897 ± 52	116591779 ± 58	$301 \pm 86 [3.5\sigma]$

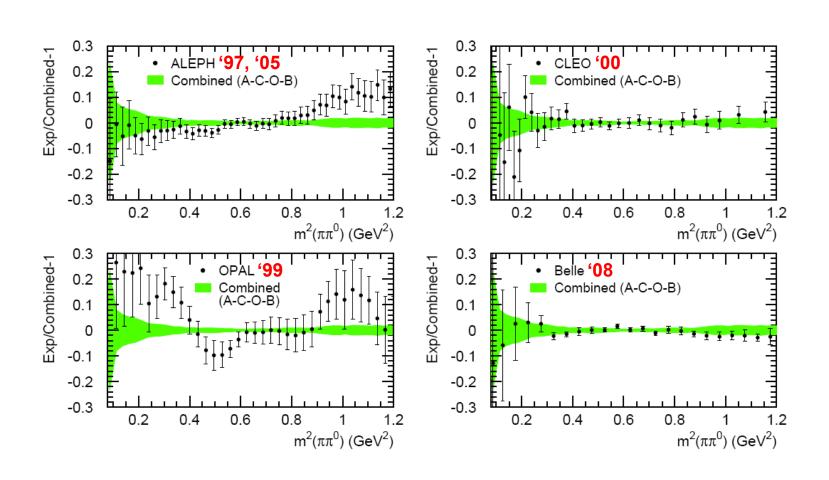
Lattice 6670 ± 200 (T. Blum, TAU08):

CVC and τ data

Use τ lepton spectral functions:

Alemany, Davier & Höcker (1998).

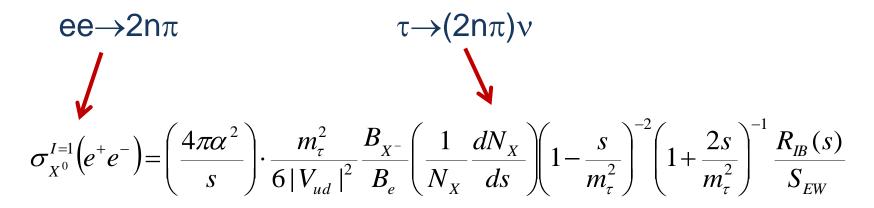
Advantages:


- Can improve precision of had, LO (factor √2 combined w/e+e-);
- Check consistency of e+e- data (test of CVC)

Disadvantages:

- e+e- data more directly related to had, LO
- Isospin breaking corrections not well understood at present

[CVC tested at the level of $10^{-3} \sim 10^{-4}$ in superallowed beta transitions arXiv: 0812.1202 (\rightarrow $|V_{ud}|=0.95425 \pm 0.00022$)]


Comparison of ALEPH, BELLE, CLEO & OPAL data with combined mass spectrum ($\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu$)

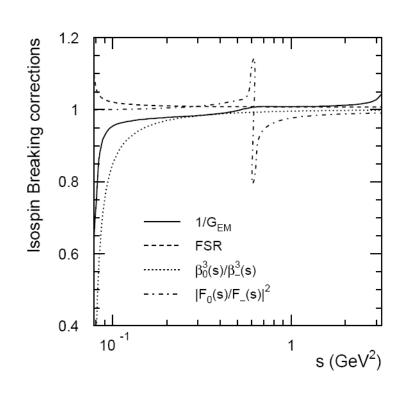
DHLMMTWYZ (2009)

Using tau data: CVC and IB corrections

CVC hypothesis (1958)

Case of 2π

$$R_{IB}(s) = \frac{FSR(s)}{G_{EM}(s)} \frac{\beta_0^3(s)}{\beta_-^3(s)} \cdot \left| \frac{F_0(s)}{F_-(s)} \right|^2 - \frac{\text{Add FSR and } I=0(\rho-\omega)}{\text{Place correct phase space}} \cdot \text{Introduce } \pi \text{ and } \rho \text{ mass difference}$$


- Remove LD photonic corrections

- Introduce ΔΓρ

Cirigliano, Ecker, Neufeld (01-02) Flores, GLC, Toledo (2005-2007)

New analysis 2π : CVC and IB corrections

- Belle data, high statistics (2008)
- New IB corrections in $m_{\rho} \& \Gamma_{\rho}$. $\Delta\Gamma_{\rho}$ includes soft & hard photon corrections to $\rho \rightarrow \pi\pi$ (•)
- New LD photonic corrections to $\tau \rightarrow \pi^+ \pi^0 \nu$ decays (•)
- Removed $\omega \rightarrow \pi^0 \gamma$ events from radiative decays (•)
 - Flores, GLC, Toledo (2007)
 - Flores, GLC, Toledo (2006)
 - DHLMMTWYZ (2009)

$$\Delta a_{\mu}^{\text{had, LO}}(\tau) = (-166.0 \pm 12.4_{\text{IB}}) \cdot 10^{-11}$$

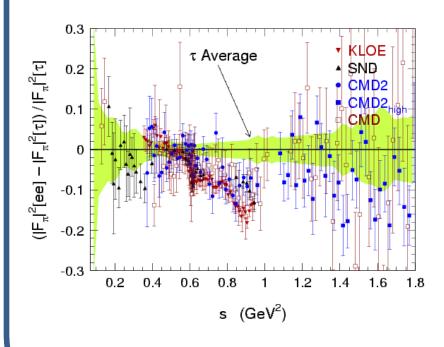
Compared to previous value (DEHZ03)

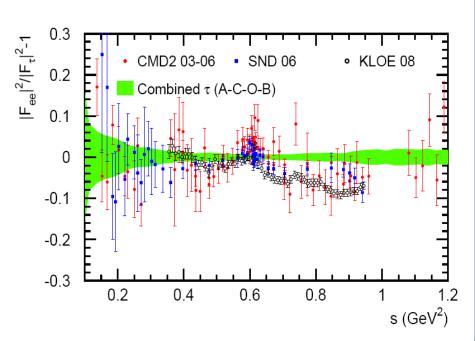
$$\Delta a_{\mu}^{\text{had, LO}}(\tau) = (-92 \pm 24_{\text{IB}}) \cdot 10^{-11}$$

Impact of IB corrections on τ-based HVP contribution

Channel	E (GeV)	$10^{11} \times a_{\mu}^{had,LO}$ (ee)	$10^{11} \times a_{\mu}^{had,LO}(\tau)$
2π , low exp	$2m_{\pi}-0.36$	94.7±1.0	$96.8 \pm 1.5 \pm 0.4_{BR} \pm 1.7_{IB}$
2π	0.36 - 1.8	4926.3 ± 35.0	$5049.0 \pm 14.3 \pm 21.8_{BR} \pm 11.8_{IB}$
$\pi^+\pi^-2\pi^0$	≤1.8	$168.0 \pm 13.0 \pm 2.0_{rad}$	$214.0 \pm 13.0 \pm 6.0_{IB}$
$2\pi^+2\pi^-$	≤1.8	$131 \pm 4 \pm 0_{rad}$	$123\pm1\pm4_{IB}$
OtherExc.+QCD	$2m_{\pi}-\infty$	$1564 \pm 19 \pm 4_{rad} \pm 7_{QCD}$	
Total	$2m_{\pi}-\infty$	$6884(41)(19)_{rad}(7)_{QCD}$	$7047(37)(7)_{rad}(7)_{QCD}(14)_{IB}$
		$6897(48)(19)_{rad}(7)_{QCD}$	

$$a_{\mu}^{\pi\pi,LO}(ee) - a_{\mu}^{\pi\pi,LO}(\tau) = \begin{cases} -125 \pm 35_{ee} \pm 29_{\tau+IB}, & w/KLOE \\ -112 \pm 43_{ee} \pm 29_{\tau+IB}, & wo/KLOE \end{cases}$$

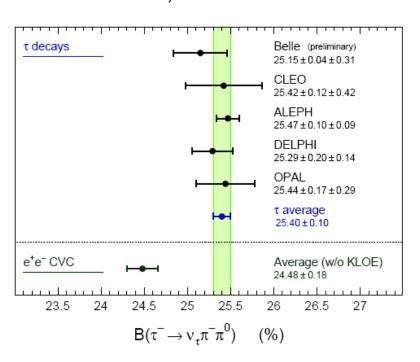

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = \begin{cases} 151 \pm 79, & \tau \text{ data} \\ 314 \pm 82, & ee \text{ w/KLOE} \\ 301 \pm 86, & ee \text{ wo/KLOE} \end{cases}$$


Impact of IB corrections on $|F_{\pi}(s)|^2$

DHLMMTWYZ (09)

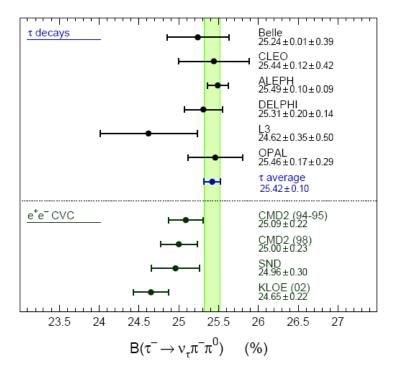
Before 2008

After Belle, KLOE &new IB corrections


Deviations up to 15%

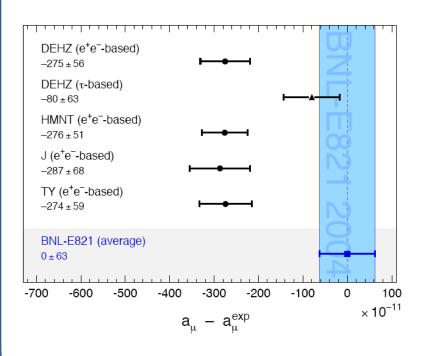
Deviations less than 8%

Impact of new IB on the tau BR

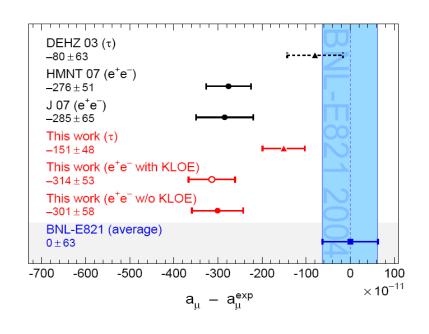

$$B(\tau \to \pi \pi \nu) = B_{\pi\pi} (CVC, e^+e^-) + \Delta B_{\pi\pi} (IB)$$

M. Davier, TAU06

Discrepancy at 4.5σ


With KLOE & new IB corrections

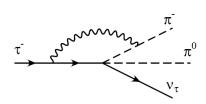
1.9σ only

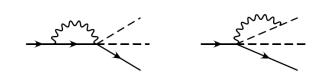

Comparison of SM predictions based on e⁺e⁻ and τ lepton data

Previous to 2008

DHLMMTWYZ (09)

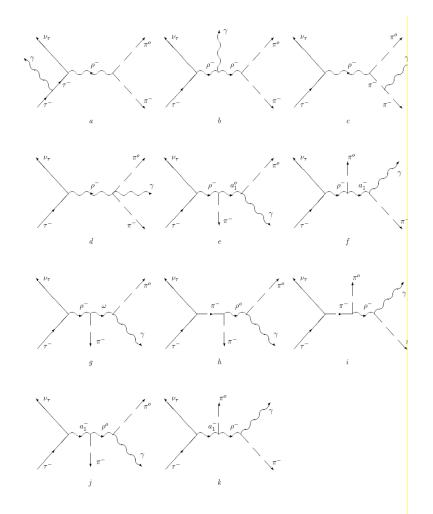
With Belle, KLOE & new IB corrections

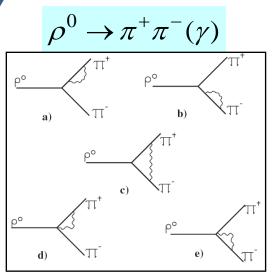

- Discrepancy e+e- & tau reduced, but persists...
- For first time τ-based prediction does not overlap with E821

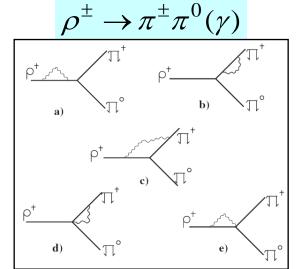

Final comments

- → Persistent discrepancy theory-experiment at >3σ level
- ▶ Theory errors smaller than experimental ones, dominated by hadronic HVP (± 44) and L×L ($\pm 26 \sim 35$). New data (Babar, Belle, KLOE; CLEO-c) may reduce HVP error ($\pm 44 \rightarrow \pm 22$?),
- → τ decay data can improve accuracy (w.a. w/e⁺e⁻, \rightarrow ± 25). * New IB corrections improve agreement with e⁺e⁻ (CVC),
- → If HVP contribution increases to close the gap, Higgs mass upper bound reduces $m_H^{95} \le 133$ GeV and cause "tension" with direct bounds (Marciano, Passera, Sirlin 2008)
- ightharpoonup A new measurement of the a_{μ} could establish New Physics

Backup slides

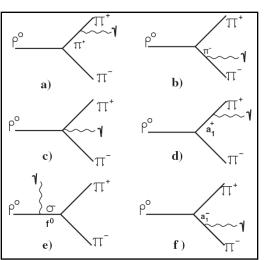

L-D radiative corrections to $\tau \rightarrow \pi \pi \nu$

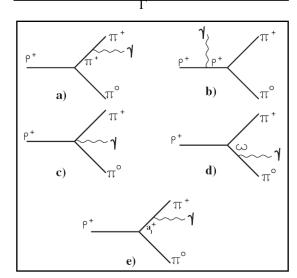



$$\frac{d\Gamma^{0}}{dt} \Rightarrow \frac{d\Gamma^{0}}{dt} \times G_{EM}(t)$$

$$G_{EM}(t) = G_{EM}^{0}(t) + G_{EM}^{MD}(t)$$

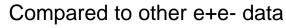
 $t = (p_{\pi^{+}} + p_{\pi^{0}})^{2}$

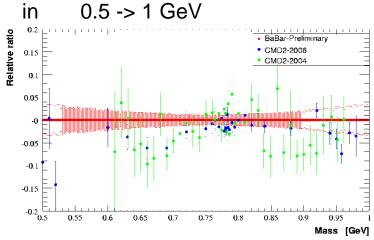

Cirigliano, Ecker & Neufeld, JHEP, (2002); Flores, Flores, GLC, Toledo, PRD, (2006)

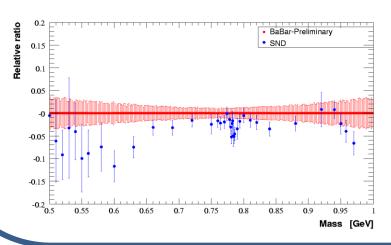


Up to 0.1% accuracy

$$\Delta\Gamma_{\rho} = \Gamma(\rho^{0} \to \pi^{+}\pi^{-}(\gamma)) - \Gamma(\rho^{+} \to \pi^{+}\pi^{0}(\gamma))$$
$$= +0.76 \, MeV$$

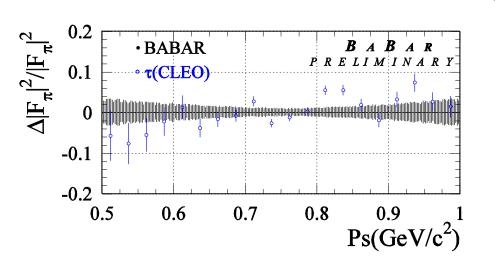

Previous values used:

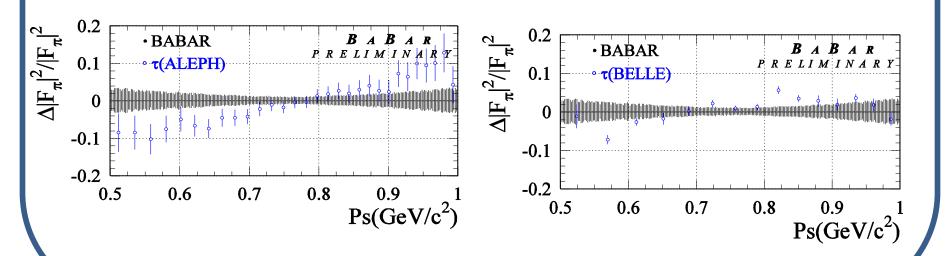

$$(-0.42 \pm 0.45) \text{ DEHZ03}$$


$$(-0.61 \pm 0.45)$$
 ChPT01

Flores, GLC, Toledo PRD 76,(2007)

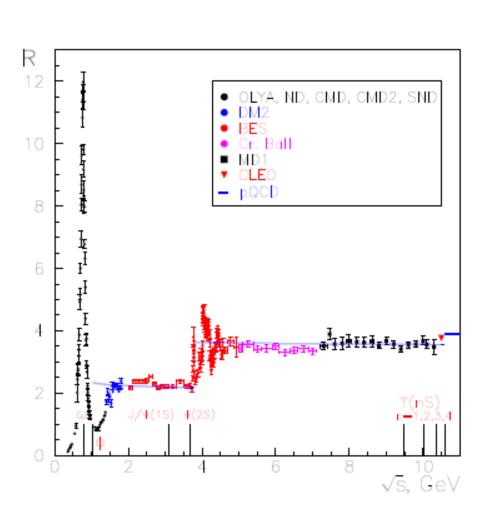
BABAR reported preliminary data on $\pi^+\pi^-(\gamma)/\mu+\mu-(\gamma)$ using ISR method (M. Davier, TAU08)

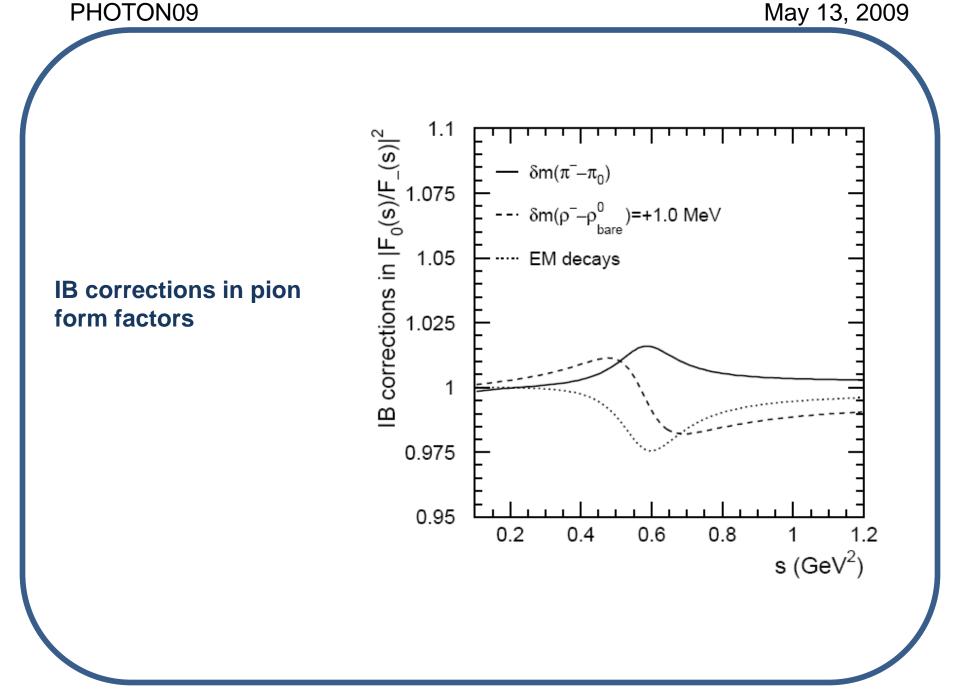

Contribution of $\pi+\pi-$ data in 0.5 to 1 GeV regionn:


(462.5±0.9±3.1)×10⁻¹⁰ (BABAR)

 $(462.5\pm0.9\pm3.1)\times10^{-10}$ (previous)

Reduces discrepancy from 3.3σ to 1.7σ

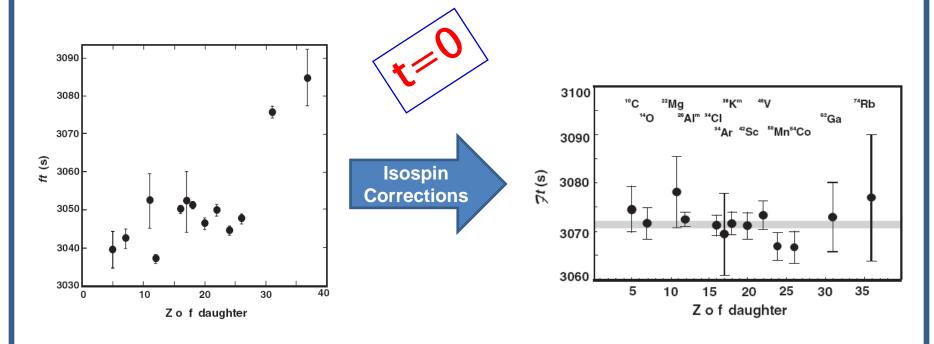

Babar data (without ρ – ω) compared to IB corrected τ data in the 0.5 to 1 GeV region



G. López Castro

Measurements of R below 10 GeV and QCD seems in good agreement

G. López Castro


Impact of IB corrections in the test of CVC

G	$\Delta a_{\mu}^{\rm had, LO}[\pi\pi, \tau] \ (10^{-10})$		
Source	GS model	${ m KS\ model}$	
$S_{\rm EW}$	-12.21 ± 0.15		
G_{EM}	-1.87 ± 0.56		
FSR	$+4.65 \pm 0.23$		
$\rho\!\!-\!\!\omega$ interference	+2.43	+2.07	
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on σ	-7.76		
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on Γ_{ρ}	$+4.12\pm0.03$	$+3.71 \pm 0.33$	
$m_{ ho^{\pm}} - m_{ ho_{ m bare}^0}$	$-0.07^{+0.06}_{-0.03}$	$-0.34^{+0.30}_{-0.22}$	
$\pi\pi\gamma$, electrom. decays	-5.96 ± 0.30		
Total	-16.60 ± 1.24		

G.	$\Delta \mathcal{B}_{\pi^-\pi^0}^{\text{CVC}} (10^{-2})$		
Source	GS model	${ m KS\ model}$	
S_{EW}	$+0.57 \pm 0.01$		
G_{EM}	-0.07 ± 0.01		
FSR	-0.19 ± 0.01		
ρ – ω interference	0.01	0	
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on σ	+0.19		
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on Γ_{ρ}	-0.22	-0.20	
$m_{\rho^{\pm}} - m_{\rho_{\text{bare}}^0}$	$+0.10\pm0.09$	$+0.11\pm0.10$	
$\pi\pi\gamma$, electrom. decays	$+0.34\pm0.02$		
Total	$+0.73 \pm 0.10$		

DHLMMTWYZ (2009)

CVC tested at the level of 10^{-4} in $0^+ \rightarrow 0^+$ ev Fermi transitions! $\Rightarrow |V_{ud}| = 0.97418(26)$ [Towner & Hardy, PRC77, (2008)]

$$ft = \frac{K}{G_F^2 |V_{ud}|^2 |M_F|^2};$$

$$M_F = \langle f | Q_- | i \rangle = \sqrt{2}$$

$$Ft = ft(1 + \delta_R)(1 - \delta_C)$$

$$M_F = \langle f | Q_- | i \rangle = \sqrt{2}(1 - \delta_C/2)$$