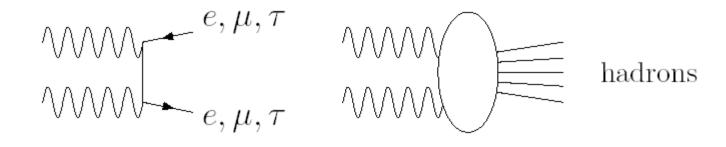
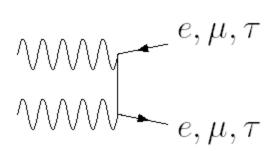
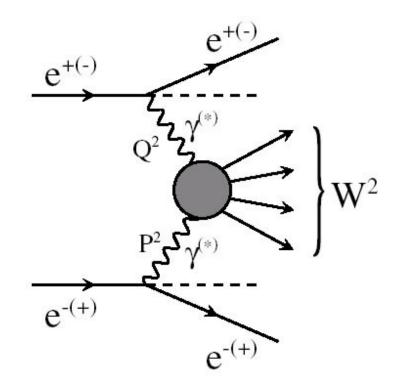
Leptonic Structure Functions Measured with the L3 Detector

Klaus Dehmelt



May 12, 2009


"Structure of the Photon"


- Dual nature of photons: uncertainty principle allows photon to fluctuate into various states (leptons, quarks, ...)
- Photon is ideal tool for probing structure of objects

Dilepton Formalism

$$e^{+}e^{-} \to e^{+}e^{-}\gamma^{*}\gamma^{*} \to e^{+}e^{-}\mu^{+}\mu^{-}$$

Dilepton Formalism

$$d\sigma = K(4\rho_1^{++}\rho_2^{++}\sigma_{TT} + 2\rho_1^{00}\rho_2^{++}\sigma_{LT} + 2\rho_1^{++}\rho_2^{00}\sigma_{TL} + \rho_1^{00}\rho_2^{00}\sigma_{LL}$$
$$+2|\rho_1^{+-}\rho_2^{+-}|\tau_{TT}\cos 2\tilde{\phi} - 8|\rho_1^{+0}\rho_2^{+0}|\tau_{TL}\cos\tilde{\phi})\frac{d^3p_1'd^3p_2'}{E_1E_2}$$

$$E_1E_2$$

$$K = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{\nu^2 - q_1^2 q_2^2}{(p_1 p_2)^2 - m^4}}$$

$$2\text{Re}\left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right\} \stackrel{\text{\tiny }}{\otimes} \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$$

$$K = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{\nu^2 - q_1^2 q_2^2}{(p_1 p_2)^2 - m^4}}$$

 ρ_i^{MN} : density matrix

$$\sigma_{PQ}$$
, τ_{PQ} : cross-sections for different helicity states of the photon

Dilepton Formalism

$$F_{1} = \frac{\sqrt{\nu^{2} - q_{1}^{2}q_{2}^{2}}}{4\pi^{2}\alpha}(\sigma_{TT} - \frac{1}{2}\sigma_{TL})$$

$$F_{2} = \frac{\nu|q_{1}^{2}|}{4\pi^{2}\alpha\sqrt{\nu^{2} - q_{1}^{2}q_{2}^{2}}}\left(\sigma_{TT} + \sigma_{LT} - \frac{1}{2}(\sigma_{LL} + \sigma_{TL})\right)$$

$$|| || ||^{2} + || || ||^{2} + || || ||^{2} + || ||^{2} + || ||^{2} + || ||^{2} + || ||^{2} + || ||^{2} + || ||^{2} + || ||^{2} + ||^{2} + ||^{2} + ||^{$$

Single Tag Formalism

- → One electron detected
- → One electron escapes undetected

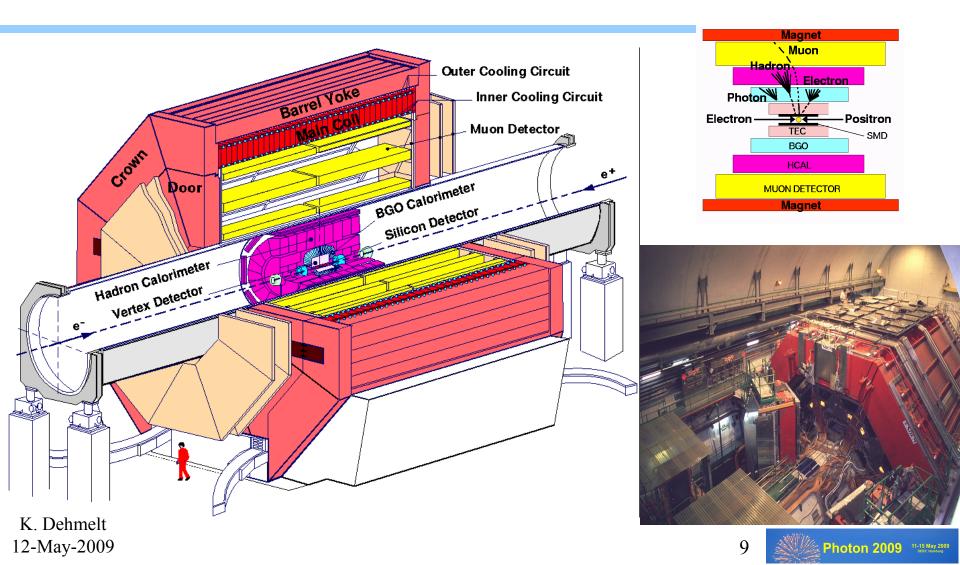
$$\Rightarrow$$
 $q_2^2 \to 0$

- \rightarrow Photon with $-q_1^2 = Q^2$: probe photon
- \rightarrow Photon with $-q_2^2 = P^2$: target photon

Structure Function

Extraction of $F_{2,QED}^{\gamma}$ Express $d\sigma$ in terms of Structure Functions

$$d\sigma = K \Big(2|\rho_1^{+-}\rho_2^{+-}|\tau_{TT}\cos 2\tilde{\phi} - 8|\rho_1^{+0}\rho_2^{+0}|\tau_{TL}\cos\tilde{\phi} + 2\rho_1^{++}\rho_2^{00} \Big\{ F_2(W, q_1^2, q_2^2)/D - F_1(W, q_1^2, q_2^2)/C \Big\} + 4\rho_1^{++}\rho_2^{++} F_1(W, q_1^2, q_2^2)/C \Big) \frac{d^3p_1'd^3p_2'}{E_1E_2}$$

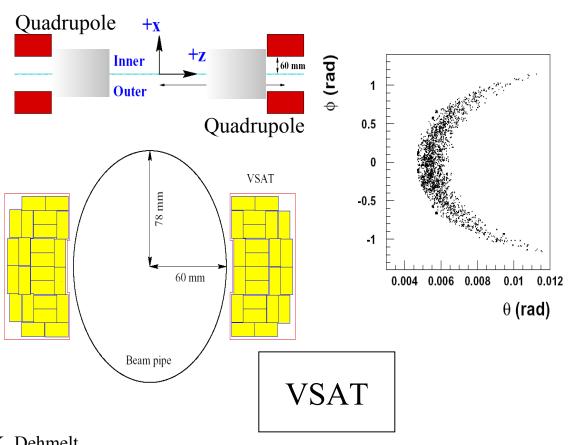

Structure Function

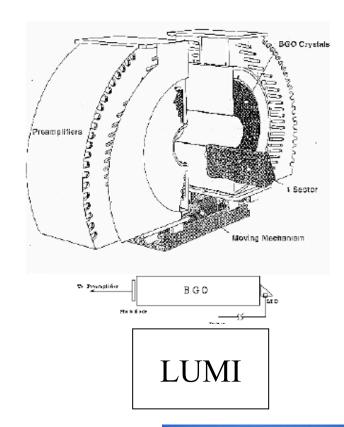
Extraction of $F_{2,QED}^{\gamma}$ Normalize the portion of $F_{2,QED}^{\gamma}$

$$F_2(W, q_1^2, q_2^2) \equiv 1$$

$$F_2^{\gamma}/\alpha = \frac{d\sigma_{measured}}{d\sigma_{Galuga,F_2=1}}$$

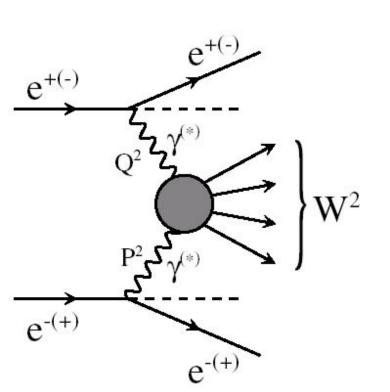
L3 – The Detector




L3 Tagging Detectors

Very Small Angle Tagger – VSAT
Luminosity Monitor – LUMI
Active Lead Ring – ALR
Electromagnetic Calorimeter Endcaps – BGO Endcaps

Hadron Calorimeter Barrel Tagging detectors used to identify scattered electron SLUM **Hadron Calorimeter** BGO Endcaps HC1 BGO ECAL Z chamber HC3 HC₂ Endca FTC VSAT: background due to Luminosity Monitor proximity to beam pipe K. Dehmelt Active lead rings **RB24** 12-May-2009


L3 Tagging Detectors: VSAT / LUMI

Two-Photon Interactions with **Dimuon Events**

$$e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma^{*}\gamma^{*} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-}$$

Data sample:

$$E_{cms} = 189 \dots 206 \, GeV$$

 $\mathcal{L}_{int} = 600 \, pb^{-1}$

- Single Tagged Electron, High Energy Deposition in Electromagnetic Calorimeters
- Two tracks, at least one to be identified as a lepton (μ^{\pm})
- VERMASEREN Monte Carlo generator for large statistics

Selection Criteria VSAT

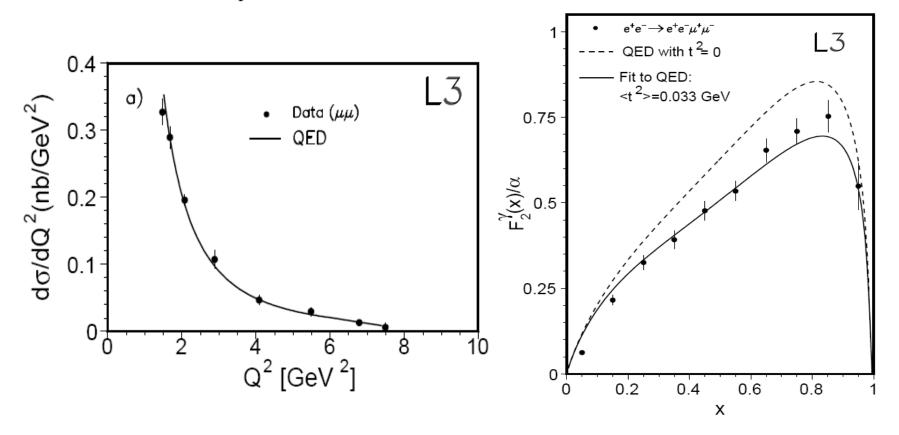
- Single tag: $0.5 \times E_{\text{beam}} \le E_{\text{VSAT}}$ and only one
- Two well-measured tracks with $\Sigma Q_i = 0$
- At least one track to be identified as μ
- Squared four-momentum transfer:

K. Dehmelt 12-May-2009

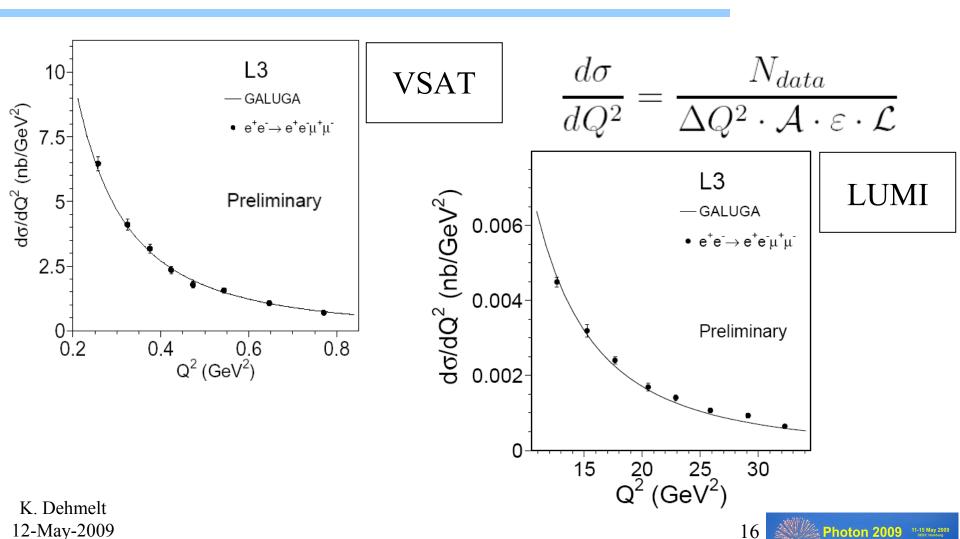
$$0.2 \text{ GeV}^2 \le Q^2 \le 0.85 \text{ GeV}^2$$

with track information:
$$\mathbf{Q}^2 = (\mathbf{p}_{\mathrm{T},1}^{\dagger} + \mathbf{p}_{\mathrm{T},2}^{\dagger})^2$$

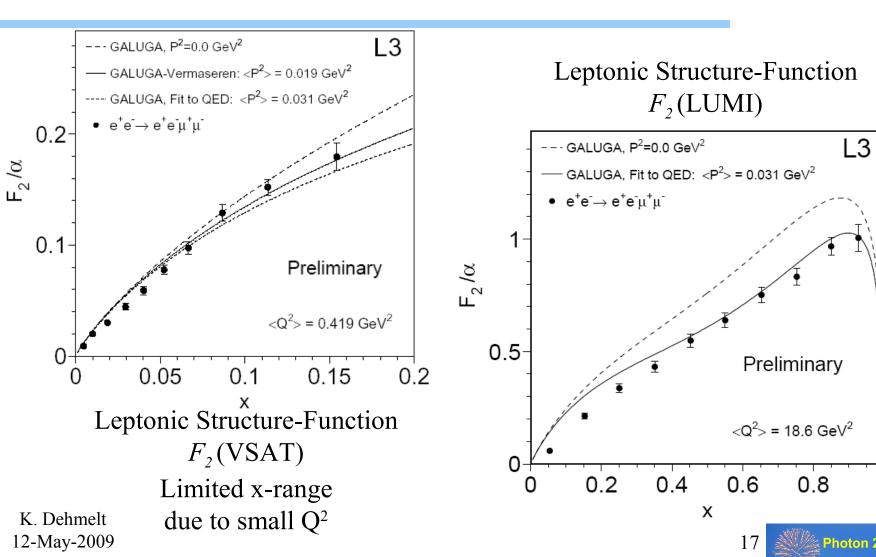
Selection Criteria LUMI


- Single tag: $0.7 \times E_{\text{beam}} \le E_{\text{LUMI}}$ and only one
- Two well-measured tracks with $\Sigma Q_i = 0$
- \bullet At least one track to be identified as μ
- Squared four-momentum transfer:

$$11 \text{ eV}^2 \le Q^2 \le 34 \text{ GeV}^2$$


with track information: $\mathbf{Q}^2 = (\vec{\mathbf{p}}_{T,1} + \vec{\mathbf{p}}_{T,2})^2$

Cross-Section & Structure-Function


Physics Letters B 438 (1998) 363–378

Cross-Section & Structure-Function

Cross-Section & Structure-Function

Summary

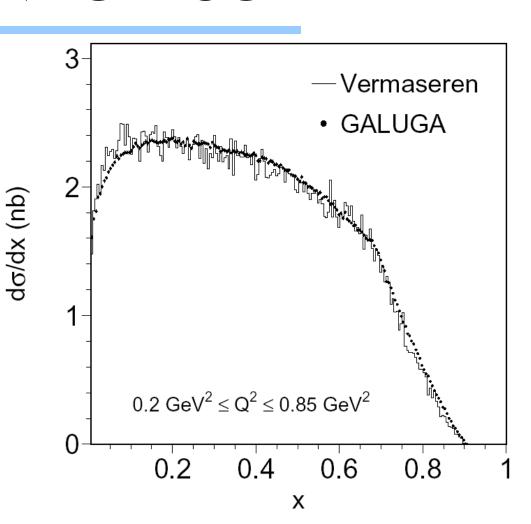
- ✓ Measurement of
 - differential cross-section

$$\frac{d\sigma}{dQ^2}$$

structure-function

$$F_{2,QED}^{\gamma}$$

in the kinematical range


$$0.2 \text{ GeV}^2 \le Q^2 \le 0.85 \text{ GeV}^2$$

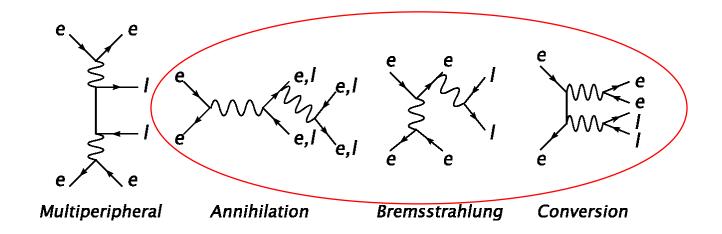
 $11 \text{ GeV}^2 \le Q^2 \le 34 \text{ GeV}^2$
 $189 \text{ GeV} \le \sqrt{s} \le 206 \text{ GeV}$

✓ Data suggest $P^2 > 0$

Backup Slides

Cross-Section & Structure-Function VERMASEREN - GALUGA

Adaptation of parameters GALUGA - VERMASEREN



Systematic Error Estimation

Error source	Error contribution (in %)
Luminosity Data	0.06
Luminosity MC	0.90
Background	0.09
Radiative events	0.60
Trigger efficiency	0.12
Selection criteria	2.36
GALUGA	2.16
Total	3.38

Background sources

$$e^-e^+ \rightarrow e^-e^+l^-l^+ \ (l=e,\mu) \rightarrow \text{Non Multiperipheral}$$

