Spin Puzzle

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Measurement of the gluon polarization in the nucleon via spin asymmetries of charmed mesons at COMPASS

Jörg Pretz

Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration

Hamburg, May 2009

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Proton	Spin St	ructure			

• ... looks simple in static quark model

(ロ) (部) (注) (注) (注) (

 Motivation
 Spin Puzzle
 How to measure △G?
 COMPASS Experiment
 Analysis & Results
 Summary

 000
 000
 0000000
 0000000000
 0000000000

Proton Spin Structure ...

- ... looks simple in static quark model
- ... much more complicated in QCD

Motivat	ion !	Spin Puzzle	How to me	asure ΔG ?	COMP/ 00000	ASS Experiment	Analysis &	Results	Summary
Pro	ton S	Spin Str	ucture	2					
	$\frac{1}{2}$ =	$= \frac{1}{2}\Delta\Sigma$	E + Spin	ΔG	+	L _q orbital ar	+ ngular m	L _g Iomentu	m
		Quark	s	Gluons		Quarks		Gluons	

<□> <□> <□> <=> <=> <=> <=> = のQ@

Motivation	Spin Puzzle	OOO	asure $\Delta G?$	00000	ASS Experimer	nt Analy	sis & Results	Summary
Proton	Spin St	ructure	9					
$\frac{1}{2}$	$= \frac{1}{2}\Delta^2$	Σ +	ΔG	+	La	+	Lø	
2	2	Spin			orbital	angular	moment	um
	Quar	·ks	Gluons		Quarks	÷	Gluons	
				_				

Focus in this talk:

Measurement of the helicity contribution of gluons, ΔG !

- from open charm double spin asymmetries
- at the COMPASS experiment

・ロン ・回 と ・ヨン ・ ヨン

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Outline					

Motivation: Where does the Nucleon Spin come from?

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Outline	2				

- Motivation: Where does the Nucleon Spin come from?
- **2** How to measure the Gluon Helicity Contribution ΔG ?

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Outline	e				

- Motivation: Where does the Nucleon Spin come from?
- **2** How to measure the Gluon Helicity Contribution ΔG ?
- The COMPASS Experiment at CERN

(ロ) (同) (E) (E) (E) (O)

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Outline	:				

- Motivation: Where does the Nucleon Spin come from?
- **2** How to measure the Gluon Helicity Contribution ΔG ?
- The COMPASS Experiment at CERN
- ΔG : Analysis & Results

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Outline	2				

- Motivation: Where does the Nucleon Spin come from?
- **2** How to measure the Gluon Helicity Contribution ΔG ?
- The COMPASS Experiment at CERN
- ΔG : Analysis & Results
- Summary & Outlook

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Motivation	Spin	Puzzle
------------	------	--------

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Motivation: Where does the Nucleon Spin come from?

> Jörg Pretz Measurement of the gluon polarization in the nucleon via spin

э

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
NI I	с · г	N 1			

Nucleon Spin Puzzle

 $SU_{spin}(2) \times SU_{flavor}(3)$ wave function:

$$|p\uparrow>=rac{1}{\sqrt{18}}(2|u\uparrow u\uparrow d\downarrow>-|u\uparrow u\downarrow d\uparrow>-|u\uparrow d\uparrow u\downarrow>+$$

permutations)

$$\begin{array}{rcl} \Delta u & = & & = & \frac{30}{18} - \frac{6}{18} & = & \frac{4}{3} \\ \Delta d & = & & = & \frac{6}{18} - \frac{12}{18} & = & -\frac{1}{3} \end{array}$$

$$\Delta \Sigma = \Delta u + \Delta d = 1$$

Static Quark Model ($\Delta \Sigma = 1$)

Measurement of the gluon polarization in the nucleon via spin

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Nucleo	on Spin F	Puzzle			

Weak Baryon decays are related to Δq :

$$\begin{array}{ll} n \to p: & (\Delta u + \Delta \bar{u}) - (\Delta d + \Delta d) &= g_A = 1.2601 \pm 0.0025 \\ \overline{\Xi}^- \to \Lambda: & (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) - 2(\Delta s + \Delta \bar{s}) &= 0.58 \pm 0.03 \end{array}$$

Assumption $\Delta s + \Delta \overline{s} = 0 \Rightarrow$

$$\Delta \Sigma = (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) = 0.58 \pm 0.03$$

Polarized Deep Inelastic Scattering (pDIS) $\vec{l} + \vec{N} \rightarrow l' + X$ provides additional equation.

- Assumption $\Delta s + \Delta \overline{s} = 0$ can be dropped.
- In addition: Information on $\Delta q(\mathbf{x})$, where 0 < x < 1 is the momentum fraction of quark in the nucleon $(\Delta q = \int_0^1 \Delta q(\mathbf{x}) dx)$

(ロ) (同) (E) (E) (E)

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Nucleo	on Spin F	Puzzle			

But NLO¹ QCD ² corrections make interpretation of $\Delta\Sigma$ difficult:

 $LO \rightarrow NLO$

¹next-to-leading order ²Quantum Chromo Dynamics

Measurement of the gluon polarization in the nucleon via spin

(4回) (注) (注) (注) (注)

Nucleon Spin Puzzle

 $LO \rightarrow$

But NLO¹ QCD ² corrections make interpretation of $\Delta\Sigma$ difficult:

 α_{s} : strong coupling constant

 $\Delta s \rightarrow \Delta s - \frac{\alpha_s}{2\pi} \Delta G$ $\Delta g(x_{g}) = g^{\uparrow}(x_{g}) - g^{\downarrow}(x_{g})$, polarized gluon distribution $\Delta G = \int_0^1 \Delta g(x_g) dx_g$

NLO

 $\Delta \Sigma \rightarrow \Delta \Sigma - \frac{3\alpha_s}{2\pi} \Delta G$

For $\Delta G \approx 2.5 \rightarrow$. $\Delta\Sigma \approx 0.6$ and $\Delta s \approx 0$ \rightarrow Measure ΔG !!!

¹next-to-leading order ²Quantum Chromo Dynamics

Jörg Pretz

Measurement of the gluon polarization in the nucleon via spin

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary

How to measure ΔG ?

◆□ → ◆□ → ◆ 三 → ◆ 三 → の < ⊙

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
		•00	000000	0000000000	

How to access the gluon distribution?

Use hadronic final state in deep inelastic scattering: $\vec{\mu} + \vec{N} \rightarrow \mu' + {\rm hadrons} + X$

・ロン ・回 ・ ・ ヨン ・ ヨン

How to access the gluon distribution?

Use hadronic final state in deep inelastic scattering: $\vec{\mu} + \vec{N} \rightarrow \mu' + {\rm hadrons} + X$

How to tag Photon -Gluon- Fusion sub-process $\gamma^* {\pmb g} \to q {\bar q} ~?$

A B A B A B A

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
How to	tag γ^*	$g \rightarrow q \bar{q}?$			

hadrons	advantage	disadvantage
open charm	clean tag*	low statistics
high <i>p_T</i>		
hadron (pairs)	higher statistics	background processes

* no intrinsic charm, no charm quarks in string fragmentation

・ロト ・回ト ・ヨト ・ヨト … ヨ

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
How to) tag γ^*	$g \rightarrow q \bar{q}?$			

hadrons	advantage	disadvantage
open charm	clean tag*	low statistics
high <i>p_T</i>		
hadron (pairs)	higher statistics	background processes

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
How to) tag γ^*	$\sigma \rightarrow a \bar{a}?$			

hadrons	advantage	disadvantage
open charm	clean tag*	low statistics
high <i>p_T</i>		
hadron (pairs)	higher statistics	background processes

QCD Compton process $(q\gamma^*
ightarrow qg)$ one of background processes

◆□> ◆□> ◆ヨ> ◆ヨ> ● ヨ

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
What	is needed	to measure	ΔG ?		

- to allow interpretation in Quark Parton Model and perturbative QCD
 - \rightarrow high energy lepton beam

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
What i	s needed	to measure	ΔG ?		

- to allow interpretation in Quark Parton Model and perturbative QCD
 - \rightarrow high energy lepton beam
 - To tag gluon, look at
 - charmed hadrons
 - hadrons with large transverse momentum
 - \rightarrow good hadron identification

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
What i	s needeo	to measure	$\Delta G?$		

- to allow interpretation in Quark Parton Model and perturbative QCD
 - \rightarrow high energy lepton beam
- To tag gluon, look at
 - charmed hadrons
 - hadrons with large transverse momentum
 - \rightarrow good hadron identification
- To learn something about spin, measure double spin asymmetries

 \rightarrow polarized beam and target

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \propto \frac{\Delta g}{g}$$
number of events (high p_T or open charm)

spin

Motivation	Spin Puzzle
------------	-------------

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

The COMPASS Experiment

Jörg Pretz Measurement of the gluon polarization in the nucleon via spin

3

Motivation

Spin Puzzle

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

COMPASS

CO mmon Muon and Proton Apparatus for Structure and Spectroscopy

pprox 200 physicists pprox 30 institutes, at CERN SPS

イロン 不同と 不同と 不同と

Э

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

The COMPASS Experiment

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Motivat	tion Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Par	ameters of E	xperiment			
	_				
	Spectrometer:	Two stages			
		1 GeV	200 GeV		
		tracking:			
		Scifis, GEMs ,	Micromegas, Stra	aws	
		particle id.:			
		K, π separatio	n 9 < <i>p</i> < 60 GeV	/ with RICH	
		ECAL, HCAL, µ	<i>ı</i> Filter		
		Trigger on μ'	and hadrons		
	Beam:	$160~{ m GeV}~\mu$, 2	$2\cdot 10^8/5$ s,		
		naturally polar	rized Pol = -0.80	\pm 0.04	
		190 GeV hadro	ons, $2 \cdot 10^7 / 5$ s,		
	pol. Target:	2 imes 65 cm cel	ls, oppositely pola	arized	
	. 0	6 LiD, Pol $pprox$ 0	.5, DNP		
	unp. Target:	LH ₂ , Lead,			

(ロ) (四) (三) (三) (三) (三) (○)

Motivation

Spin Puzzle

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Jörg Pretz

Measurement of the gluon polarization in the nucleon via spin

Э

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment ○○○○○●	Analysis & Results	Summary
~	_				

Summary: Experiment

- $\bullet\,$ polarized μ beam of 160 GeV \rightarrow Deep Inelastic scattering
- polarized target
- Two stage spectrometer
 - momentum range 1-200 GeV
 - particle id.

Fulfills all requirements to study The Spin Structure of the Nucleon, especially ΔG

Motivation	Spin	Puzzle
Motivation	Spin	Puzzle

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Analysis & Results

Jörg Pretz Measurement of the gluon polarization in the nucleon via spin

<ロ> (四) (四) (三) (三) (三) 三

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results ○●○○○○○○○	Summary
Analys	is				

Simple: Measure double spin asymmetry

$$A^{raw} = rac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \propto rac{\Delta g}{g}$$

and extract gluon polarisation $\frac{\Delta g}{g}$. But ...

(□) (@) (E) (E) E

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
$N^{\uparrow\downarrow}, N^{\uparrow\uparrow} \rightarrow \Delta g/g$					

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = P_B P_T f a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}} \frac{\Delta g}{g} + A^{bgd}$$

P _B	beam polarization $pprox -0.8$
P _T	target polarization $pprox$ 0.5
f	dilution factor $pprox$ 0.4 for 6 LiD target
a _{LL}	asymmetry of partonic process $ec{\mu}+ec{g} ightarrow\mu'+q+ar{q}$
	-0.5 to 0.6
$\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bed}}$	fraction of photon-gluon fusion process
	$0.5(D^*) \ 0.1 \ (D^0)$
source of background	combinatorial background
determination of bgd	from D^{st} (D^0) mass spectrum
A ^{bgd}	determined simultaneously

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
$N^{\uparrow\downarrow}, N^{\uparrow\uparrow} \rightarrow \Delta g/g$					

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = P_B P_T f a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}} \frac{\Delta g}{g} + A^{bgd}$$

P _B	beam polarization $pprox -0.8$
P _T	target polarization $pprox$ 0.5
f	dilution factor $pprox$ 0.4 for 6 LiD target
a _{LL}	asymmetry of partonic process $ec{\mu}+ec{g} ightarrow\mu'+q+ar{q}$
	-0.5 to 0.6
$\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bed}}$	fraction of photon-gluon fusion process
	$0.5(D^*) \ 0.1 \ (D^0)$
source of background	combinatorial background
determination of bgd	from D^{st} (D^0) mass spectrum
A ^{bgd}	determined simultaneously

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @
Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
<i>N</i> ^{↑↓} , <i>N</i>	$\uparrow\uparrow \rightarrow \Delta g$	g/g			

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = P_B P_T \mathbf{f} a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}} \frac{\Delta g}{g} + A^{bgd}$$

P _B	beam polarization $pprox -0.8$
P _T	target polarization $pprox$ 0.5
f	dilution factor $pprox$ 0.4 for 6 LiD target
a _{LL}	asymmetry of partonic process $ec{\mu}+ec{g} ightarrow\mu'+q+ar{q}$
	-0.5 to 0.6
$\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bed}}$	fraction of photon-gluon fusion process
	$0.5(D^*) \ 0.1 \ (D^0)$
source of background	combinatorial background
determination of bgd	from D^{st} (D^0) mass spectrum
A ^{bgd}	determined simultaneously

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
<i>N</i> ^{↑↓} , <i>N</i>	$\uparrow\uparrow \rightarrow \Delta_{k}$	g/g			

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = P_B P_T f a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}} \frac{\Delta g}{g} + A^{bgd}$$

P _B	beam polarization $pprox -0.8$
P _T	target polarization $pprox$ 0.5
f	dilution factor $pprox$ 0.4 for 6 LiD target
a _{LL}	asymmetry of partonic process $ec{\mu}+ec{g} ightarrow\mu'+q+ar{q}$
	-0.5 to 0.6
$\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bed}}$	fraction of photon-gluon fusion process
	$0.5(D^*) \ 0.1 \ (D^0)$
source of background	combinatorial background
determination of bgd	from D^{st} (D^0) mass spectrum
A ^{bgd}	determined simultaneously

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Jörg Pretz

 Motivation Spin Puzzle How to measure $\triangle G$? $N^{\uparrow\downarrow}, N^{\uparrow\uparrow} \rightarrow \Delta g/g$

Determination of aLL

 a_{LL} depends on kinematic variables not accessible experimentally

Analysis & Results

Summary

 a_{LL} is obtained from neural network trained on AROMA MC sample using LO QCD

(日) (同) (E) (E) (E)

COMPASS Experiment

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
<i>N</i> ^{↑↓} , <i>N</i>	$\uparrow\uparrow \rightarrow \Delta_{e}$	g/g			

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = P_B P_T f a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}} \frac{\Delta g}{g} + A^{bgd}$$

P _B	beam polarization $pprox -0.8$			
P _T	target polarization $pprox$ 0.5			
f	dilution factor $pprox$ 0.4 for 6 LiD target			
a _{LL}	asymmetry of partonic process $ec{\mu}+ec{g} ightarrow\mu'+q+ec{q}$			
	-0.5 to 0.6			
$\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bed}}$	fraction of photon-gluon fusion process			
	$0.5(D^*) \ 0.1 \ (D^0)$			
source of background	combinatorial background			
determination of bgd	from D^{st} (D^0) mass spectrum			
A ^{bgd}	determined simultaneously			

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Motivation

Spin Puzzle Ho

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

$N^{\uparrow\downarrow}, N^{\uparrow\uparrow} \rightarrow \Delta g/g$

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
<i>N</i> ^{↑↓} , <i>N</i>	$\uparrow\uparrow \rightarrow \Delta_{e}$	g/g			

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = P_B P_T f a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}} \frac{\Delta g}{g} + A^{bgd}$$

P _B	beam polarization $pprox -0.8$
P _T	target polarization $pprox$ 0.5
f	dilution factor $pprox$ 0.4 for 6 LiD target
a _{LL}	asymmetry of partonic process $ec{\mu}+ec{g} ightarrow\mu'+q+ar{q}$
	-0.5 to 0.6
$\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bed}}$	fraction of photon-gluon fusion process
	$0.5(D^*) \ 0.1 \ (D^0)$
source of background	combinatorial background
determination of bgd	from D^{st} (D^0) mass spectrum
A ^{bgd}	determined simultaneously

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Highlig	ts of th	he Analysis			

• $\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}}$ is parameterized in terms of 10 variables, not just as a function of the reconstructed mass.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Highlig	ts of th	ne Analysis			

- $\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}}$ is parameterized in terms of 10 variables, not just as a function of the reconstructed mass.
- each event is weighted with its full analyzing power:

 $f P_B a_{LL} rac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}}$

pprox 25% gain in FOM , a_{LL} has positive and negative values:

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Highlig	thts of th	he Analysis			

• events are simultaneously weighted with "background" weight $\left(\dots \frac{\sigma_{bgd}}{\sigma_{PGF} + \sigma_{bed}}\right)$

 \Rightarrow allows simultaneous extraction of signal and background asymmetries,

more efficient than side band subtraction

details: J. P. & J. M. Le Goff, NIM A 602 (2009) 594, arXiv:0811.1426

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summa

Results

٢y

Motivation S

Spin Puzzle How to m

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Results on $\Delta g/g$

- First two results published in arXiv:0904.3209, acc. by PLB
- last two results are new

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Motivation S

Spin Puzzle How to m

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Results on $\Delta g/g$

- First two results published in arXiv:0904.3209, acc. by PLB
- last two results are new
- Combined result: $\frac{\Delta g}{g} = -0.39 \pm 0.24(\text{stat}) \pm 0.11(\text{sys})$

Measurement of the gluon polarization in the nucleon via spin

イロン イロン イヨン イヨン 三日

ヘロン ヘロン ヘヨン ヘヨン

Э

(at scale $\mu \approx \Sigma p_T^2 \approx 1-3$ GeV² (high p_T) and $\mu^2 \approx 4(m_c^2 + p_T^2) \approx 13$ GeV² (open charm))

3

(at scale $\mu \approx \Sigma p_T^2 \approx 1 - 3 \text{ GeV}^2$ (high p_T) and $\mu^2 \approx 4(m_c^2 + p_T^2) \approx 13 \text{ GeV}^2$ (open charm))

• high p_T points are more model dependent because $R = \sigma_{PGF} / (\sigma_{PGF} + \sigma_{bgd})$ has to be determined from MC

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Asymn	netries				

- Result is derived in LO QCD, because the partonic asymmetry a_{LL} is computed in LO.
- better to publish just asymmetry (in LO: $A = a_{LL} \frac{\Delta g}{g}$), which can be used by theorists to derive $\Delta g/g$ using their (NLO) a_{LL} .
- however: a_{LL}^{LO} varies a lot over our kinematic range, this is most likely also true for a_{LL}^{NLO}
- \Rightarrow publish asymmetry in bins of E^{D^0} and $p_T^{D^0}$, within bins a_{LL}^{LO} varies less (and hopefully a_{LL}^{NLO} too ...?)
- Tables with asymmetries can be found in arXiv:0904.3209

Motivation

Spin Puzzle How to

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Asymmetries

bin lii	nits							
p_{/_	$E_D/$	$A^{\gamma N \to D^0 X}$	$\langle y \rangle$	$< Q^2 > /$	$< p_T^D > /$	$< E_D > /$	D	a _{LL}
GeV/c^2	GeV			GeV/c^2	GeV/c	GeV		
0-0.3	0-30	-1.34 ± 0.85	0.47	0.50	0.19	24.8	0.57	0.37
0-0.3	30-50	-0.27 ± 0.52	0.58	0.75	0.20	39.2	0.70	0.48
0-0.3	> 50	-0.07 ± 0.66	0.67	1.06	0.20	60.0	0.80	0.61
0.3-0.7	0-30	-0.85 ± 0.51	0.47	0.47	0.50	25.1	0.56	0.26
0.3-0.7	30-50	0.09 ± 0.29	0.58	0.65	0.51	39.4	0.71	0.34
0.3-0.7	> 50	-0.20 ± 0.37	0.67	0.68	0.50	59.6	0.80	0.46
0.7-1	0-30	-0.47 ± 0.56	0.48	0.53	0.85	25.2	0.58	0.13
0.7-1	30-50	-0.49 ± 0.32	0.58	0.66	0.85	39.1	0.70	0.17
0.7-1	> 50	1.23 ± 0.43	0.68	0.73	0.84	59.4	0.81	0.26
1-1.5	0-30	-0.87 ± 0.48	0.50	0.49	1.21	25.7	0.60	0.01
1-1.5	30-50	-0.24 ± 0.25	0.60	0.62	1.22	39.5	0.73	0.00
1-1.5	> 50	-0.18 ± 0.34	0.69	0.77	1.22	59.3	0.83	0.04
> 1.5	0-30	0.83 ± 0.71	0.52	0.51	1.77	26.2	0.63	-0.13
> 1.5	30-50	0.18 ± 0.28	0.61	0.68	1.87	40.0	0.74	-0.20
> 1.5	> 50	0.44 ± 0.33	0.71	0.86	1.94	59.9	0.84	-0.24

- systematic error 20%
- D^0 and D^* sample combined

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary

Summary & Outlook

(ロ) (四) (三) (三) (三)

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Summa	ary & Oi	utlook			

Summary:

- Spin Puzzle $\Delta \Sigma_{DIS} \approx 0.25 \leftrightarrow \Delta \Sigma_{QM} \approx 0.6$ cannot be explained by large helicity contribution from gluons.
- $\Delta g/g$ small at $x_g \approx 0.1$ scenarios with large $\Delta G \approx 2-3$ are excluded
- similar result form direct and indirect measurement $(A_1 \text{ and } \vec{p}\vec{p})$
- but error on first moment is so still large, that a gluon helicity contribution of 100% ($\Delta G = \int_0^1 \Delta g(x_g) dx_g = 0.5$) to the nucleon spin is not excluded
- shape $\Delta g(\mathbf{x}_g)$ not well determined

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
Summ	arv & O	utlook			

Outlook:

- COMPASS 2007 data not yet analyzed
- COMPASS opencharm NLO analysis in progress
- Global NLO analysis including all data (direct measurements are not yet included)
- Ideal tool to continue measurements on $\Delta g(x_g)$: Polarized Electron Nucleon Collider

(日) (同) (E) (E) (E)

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary

Spare

Systematic Error: Open Charm

source	$\delta(\frac{\Delta g}{g})$	source	$\delta(\frac{\Delta g}{g})$
False asymmetry	0.05(0 . 05)	Beam polarisation P_{μ}	0.02
S/(S+B)	0 .07(0.01)	Target polarisation $\dot{P}_{\rm t}$	0.02
$a_{ m LL}$	0.05(0.03)	Dilution factor f	0.02
	Total error	0.11(0.07)	
	stat. error	0.42(0.34)	

(ロ) (回) (E) (E) (E)

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
What's	next?				

How to improve our knowledge about $\Delta g(x_g)$?

- Ideal tool would be an polarized electron nucleon collider
- more physics cases: Generalized Parton Distributions, transversity, ...

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
What's	s next?				

collider	COMPASS
	(solid state target
	with 1 interaction length,
	${\sf BR}(D^0 o K\pi pprox 4\%))$
resolve D^0 decay vertex:	no secondary vertex:
clean D ⁰ sample	large comb. background
reconstruct both D mesons	reconstruction of $1 D$ meson

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS Experiment	Analysis & Results	Summary
M/hat'	- nov+2				

W	hat's	next?

collider	COMPASS		
	(solid state target		
	with 1 interaction length,		
	$BR(D^0 o K\pi pprox 4\%))$		
resolve D^0 decay vertex:	no secondary vertex:		
\sim clean D^0 sample	large comb. background		
reconstruct both D mesons	reconstruction of $1 D$ meson		
→Higher Figure of merit—	T		
\rightarrow Better determination of x_g			
<u>c</u>			
$g(p_g = x_g p_N) \qquad \gamma^*$			
c			
	(ロ) (四) (ヨ) (ヨ)		

Motivation Spin Puzzle

le How t

How to measure ΔG ?

COMPASS Experiment

Analysis & Results

Summary

Open charm: Kinematic Distributions

Comparison data vs. MC

Jörg Pretz

Measurement of the gluon polarization in the nucleon via spin

æ

Motivation	Spin Puzzle	How to measure ΔG ?	COMPASS
		000	000000

COMPASS Experiment

Analysis & Results

Summary

Result per year

・ロト ・回ト ・ヨト ・ヨト … ヨ

Motiva

ysis & Results

Summary

Res

・ロ・・(四・・)(日・・)日

• Classical Method: Select signal region: Determine $\boxed{\frac{N^{\uparrow\downarrow}-N^{\uparrow\uparrow}}{N^{\uparrow\downarrow}+N^{\uparrow\uparrow}} = \alpha A_S + \beta A_B}$

イロン イロン イヨン イヨン

э

MotivationSpin PuzzleHow to measure $\triangle G$?COMPASS ExperimentAnalysis & ResultsSummaryHow to determine an asymmetry?

- Classical Method: Select signal region: Determine $\underbrace{\frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = \alpha A_{S} + \beta A_{B}}$
- select side bands to determine A_B

イロン イロン イヨン イヨン

MotivationSpin PuzzleHow to measure $\triangle G$?COMPASS ExperimentAnalysis & ResultsSummaryHow to determine an asymmetry?

- Classical Method: Select signal region: Determine $\underbrace{\frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = \alpha A_S + \beta A_B}$
- select side bands to determine A_B
- Extract A_S

イロン イロン イヨン イヨン

How to determine an asymmetry?

 Better Method: Weight every event:

$$w_{S} = \frac{\sigma_{S}}{\sigma_{S} + \sigma_{B}} \text{ signal,}$$
$$w_{B} = \frac{\sigma_{B}}{\sigma_{S} + \sigma_{B}} \text{ bgd}$$

Jörg Pretz Measurement of the gluon polarization in the nucleon via spin

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How to determine an asymmetry?

 Better Method: Weight every event:

$$w_{S} = \frac{\sigma_{S}}{\sigma_{S} + \sigma_{B}} \text{ signal,}$$

$$w_{B} = \frac{\sigma_{B}}{\sigma_{S} + \sigma_{B}} \text{ bgd}$$

$$a_{S} = \frac{\sum^{\uparrow \downarrow} w_{S} - \sum^{\uparrow \uparrow} w_{S}}{\sum^{\uparrow \downarrow} w_{S} + \sum^{\uparrow \uparrow} w_{S}},$$
$$a_{B} = \frac{\sum^{\uparrow \downarrow} w_{B} - \sum^{\uparrow \uparrow} w_{B}}{\sum^{\uparrow \downarrow} w_{B} + \sum^{\uparrow \uparrow} w_{B}}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

How to determine an asymmetry?

 Better Method: Weight every event:

$$w_{S} = \frac{\sigma_{S}}{\sigma_{S} + \sigma_{B}} \text{ signal,}$$
$$w_{B} = \frac{\sigma_{B}}{\sigma_{S} + \sigma_{B}} \text{ bgd}$$

$$a_{S} = \frac{\sum^{\uparrow \downarrow} w_{S} - \sum^{\uparrow \uparrow} w_{S}}{\sum^{\uparrow \downarrow} w_{S} + \sum^{\uparrow \uparrow} w_{S}},$$
$$a_{B} = \frac{\sum^{\uparrow \downarrow} w_{B} - \sum^{\uparrow \uparrow} w_{B}}{\sum^{\uparrow \downarrow} w_{B} + \sum^{\uparrow \uparrow} w_{B}}$$
$$\Rightarrow A_{S} \text{ (and } A_{P}\text{)}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・
Motivation Spin Puzzle How to measure ΔG ? **COMPASS** Experiment Analysis & Results Summary

How to determine an asymmetry?

Advantages

- No arbitrary choice of background region
- Higher figure of merit (FOM= $1/\sigma_{A_s}^2$)
- This method reaches the FOM of the unbinned maximum likelihood method
- J. P. & J. M. Le Goff. arXiv:0811.1426

3