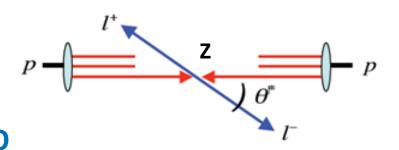
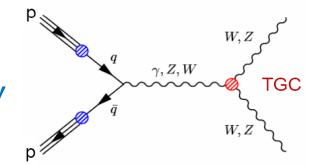
Standard Model tests and searches with photons at the LHC

Suen Hou Academia Sinica, Taiwan On behalf of the ATLAS & CMS collaboration




Electroweak with photon @LHC

 Single boson, W, Z production candles for lepton ID, calibrations, precision SM measurements to NNLO

• Di-boson production with photons: $W\gamma$, $Z\gamma$

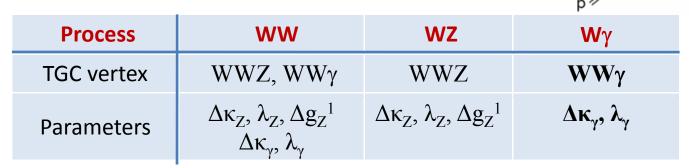
large cross sections detect Triple gauge coupling of **WW**γ search for anonymous coupling of **ZZ**γ, **Z**γγ

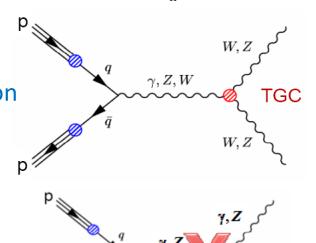
• $\mathbf{W}\gamma$, $\mathbf{Z}\gamma$ are background to

Di-boson: WW, WZ

Higgs search : $\mathbf{H} \rightarrow \gamma \gamma$

Triple gauge boson coupling (TGC)


Lagrangian for Charged TGC

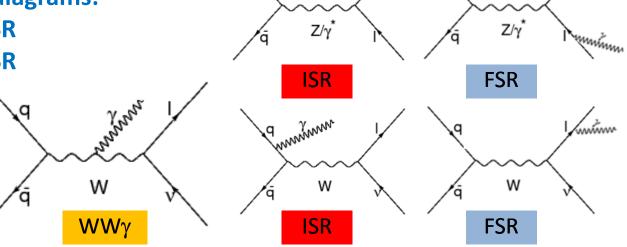

$$\begin{split} \mathcal{L}_{\text{WWV}} / g_{\text{WWV}} &= \overline{g_{\text{V}}^{1}} (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}) \\ &+ \overline{K_{\text{V}}} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\overline{\lambda_{\text{V}}}}{M_{w}^{2}} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda} \end{split}$$

- Charged TGC WW γ predicted for W γ production sensitive to anomalous coupling $\lambda_{\gamma} = \lambda_{z} = 0$ (SM) $\lambda_{\gamma} = \kappa_{z} = 1$ (SM) $\lambda_{\kappa_{\gamma}} = \kappa_{\gamma} 1$ couples to $\lambda_{\gamma} = \kappa_{\gamma} = 1$
 - Anomalous coupling for new physics: enhancement in high $p_T(g, \lambda \text{ type})$

changes in angular distributions (κ type)

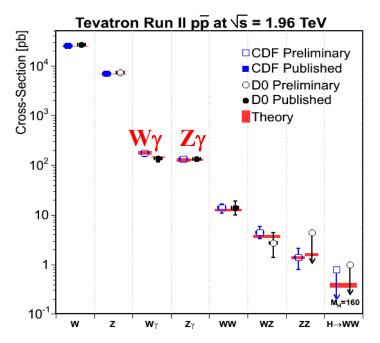
Neutral TGC ZZγ, Zγγ is forbidden for Zγ
 Z, γ has no charge nor weak isospin

Measurables for $W\gamma$ and $Z\gamma$


- We report on sensitivity for lepton (e, μ) channels $W^{\pm}(\rightarrow \ell^{\pm}v)\gamma$, $Z(\rightarrow \ell^{+}\ell^{-})\gamma$
- Physics interests are the ISR photon production and the Triple Gauge boson Coupling NLO calculations: Baur et al., Madgraph, Sherpa, ...
- Variables sensitive to TGC:

cross section; boson $p_T(Z,\gamma)$, angle

Standard Model LO diagrams:


 $Z\gamma$: ISR + FSR

 $W\gamma$: $WW\gamma + ISR + FSR$

Di-boson from the Tevatron to the LHC

Production rate @LHC is orders of magnitudes higher than Tevatron:

- 10x higher cross section;
- >10x higher luminosity

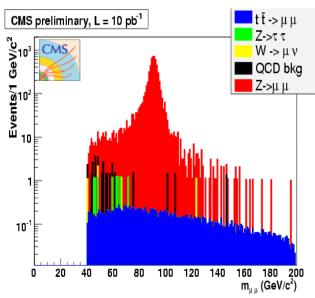
Probing *anomalous TGCs*In higher energy region @LHC

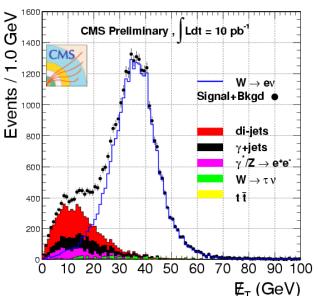
http://www-cdf.fnal.gov/physics/ewk/

http://www-d0.fnal.gov/Run2Physics/WWW/results/ew.htm

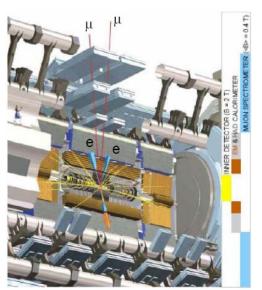
NLO CTEQ6M Cross section $\sigma(pb)$

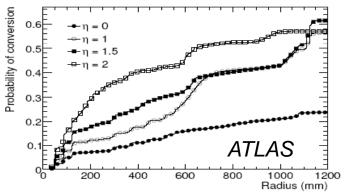
	conditions	√s=1.96 TeV	√s=14 TeV
$\mathbf{W}^{\pm}\gamma$	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	19.3	451
$\mathbf{Z}^0\gamma$	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	4.7	219
W^+W^-	W width inleuded	12.4	112
$W^{\pm}Z^0$	Z, W on mass shell	3.7	48
$\mathrm{Z}^0\mathrm{Z}^0$	Z on mass shell	1.4	15


U. Baur et al.; PRD 53 1098, PRD 57 2823

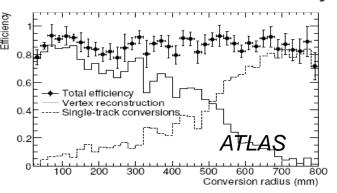

S. Frixione et al., JHEP 0206 029, JHEP 0308 007

μ /e/ γ detection


• Z(U), W(lv) events are candles for μ , e/γ ID

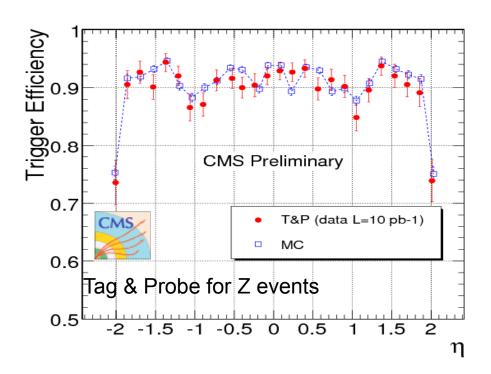


e/γ systematics:

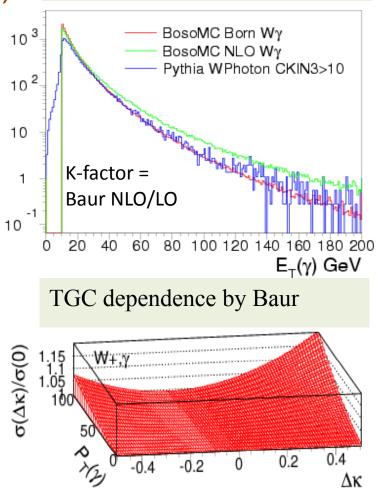

- bremsstrahlung,
- γ conversion
- Jet faking photon, π^0/γ

Conversion probability

Conversion reconstruction efficiency

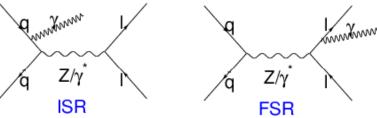

$W\gamma$, $Z\gamma$ study samples

• SM generators:


- pythia for LO and full simulations,
- Baur et al. for NLO calculations

Full detector simulation data:

- for pp at **Vs=14 TeV**, with **trigger**



Pythia LO, Baur LO & NLO parton level

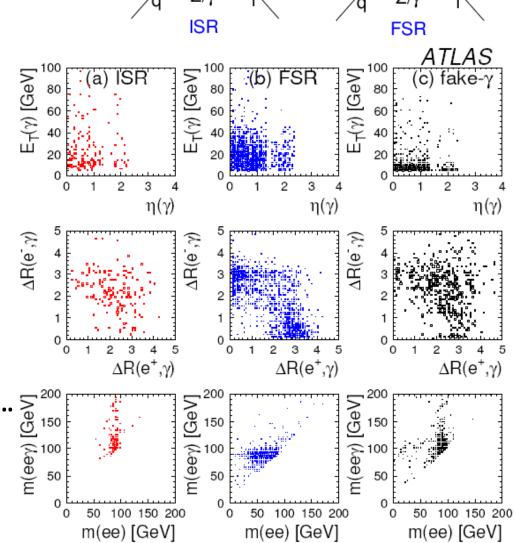
$Z\gamma \rightarrow \ell^+\ell^-\gamma$ selection

Event topology:

Z of lepton pairs is clean

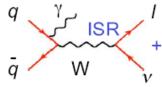
Z+ISR photon:

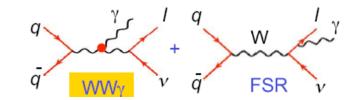
- $\Delta R(\ell, \gamma)$ random, $E_{\tau}(\gamma)$ high
- $m(\mathcal{U}) = m_7$


Z+FSR photon:

- $\Delta R(\zeta \gamma)$ small, $E_{\tau}(\gamma)$ low
- $m(\ell\ell\gamma) = m_{7}$

Z+fake photon:


inclusive EM objects in jet: π^0 , η , ... $\sum_{j=150}^{200} 150$ wrongly identified objects: e^{\pm} , ... $\Delta R(\ell, \gamma)$ random, $E_{\tau}(\gamma)$ low $E_{\tau}(\gamma)$ l


- $m(\ell \ell) = m_7$

$W\gamma \rightarrow \ell^{\pm}\nu\gamma$ selection

Event topology:

Transverse masses of W, $W\gamma$:

$$m_T(W) = (E_T(W)^2 - p_x(W)^2 - p_v(W)^2)^{1/2} \qquad E_T(W) = E_T(MET) + E_T(W) = E_T(W, \gamma) = (E_T(W, \gamma)^2 - p_x(W, \gamma)^2 - p_y(W, \gamma)^2)^{1/2} \qquad p_i(W) = E_i(MET) + p_i(\ell)$$

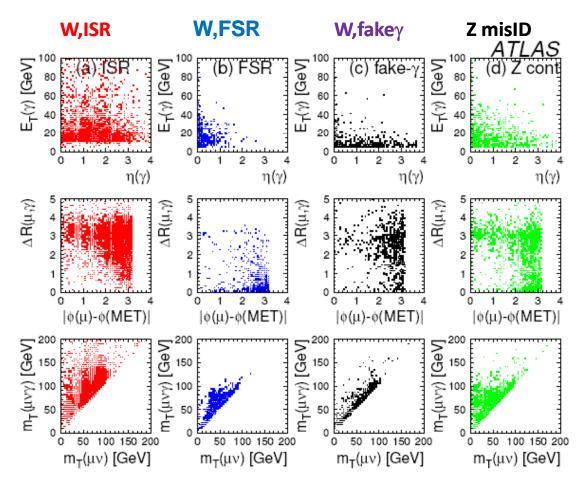
$$E_T(W) = E_T(MET) + E_T(\ell)$$

$$p_i(W) = E_i(MET) + p_i(\ell)$$

W+ISR,WWγ photon:

- $\Delta R(\ell, \gamma)$ random, $E_{\tau}(\gamma)$ high
- $m_T(W)$, $m_T(W\gamma)$ high

W+FSR photon:

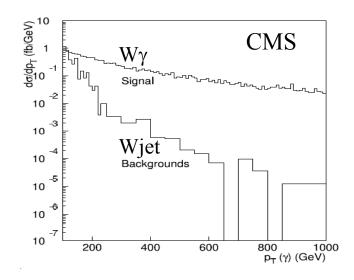

- $\Delta R(\ell, \gamma)$ small, $E_{\tau}(\gamma)$ low
- $m_T(W)$, $m_T(W\gamma)$ low

W+fake photon:

- $\Delta R(\ell, \gamma)$ random, $E_{\tau}(\gamma)$ low
- $m_T(W)$, $m_T(W\gamma)$ high

Z, **Zjet**, **Z**γ mis-ID:

- $\Delta R(I,\gamma)$ back-to-back
- $E_{\tau}(\gamma)$ high
- $m_{\tau}(W)$ low, $m_{\tau}(W\gamma)$ high



Cut-based and BDT for Z_γ, W[±]_γ

CMS cut-based ZyX, WyX selection

Variable	Cut value
Pseudo-rapidity Photon/Lepton	$ \eta_{l,\gamma} < 2.4$
Transverse Momentum Photon	$P_{T,\gamma} > 100 \text{ GeV}/c$
Transverse Momentum Lepton	$P_{T,l} > 25 \mathrm{GeV}/c$
Photon-Lepton Separation	$\Delta R_{l,\gamma} > 0.7$
Transverse Missing Energy	$E_T > 50 \text{ GeV}$
$ m W\gamma$ Cluster Transverse Mass	$M_{TC}^{\mathrm{W}\gamma} > 90 \; \mathrm{GeV}/c^2$
$\mathrm{Z}\gamma$ Three-body Mass	$M_{ll\gamma} > 100 \text{ GeV}/c^2$

ATLAS Boosted Decision-Tree for $Z\gamma$, $W\gamma$ Multiple trainings & tests for

Z+ISR γ to 1) **Z+FSR** γ ; 2) **Z+fake** γ

W+ISRγ to 1) W+FSRγ; 2) W+fakeγ; 3) Z-misID

Wy selection at 67% efficiency (1fb⁻¹)

		Signal		Background	
		$W^{\pm}\gamma$	W+FSR_ γ	W+fake_ γ	$Z(\ell \ell) \gamma$
$\ell = e$	Pre-selected	1710	11440	7890	32480
	BDT selection	1145	242	791	101
	Triggered	966	188	628	93
	NLO scaled	1604 (k=1.66)			
$\ell = \mu$	Pre-selected	2680	28410	10250	3950
	BDT selection	1793	413	961	409
	Triggered	1305	177	595	260
	NLO scaled	2166 (k=1.66)			

$Z\gamma$ selection at 67% efficiency (1fb⁻¹)

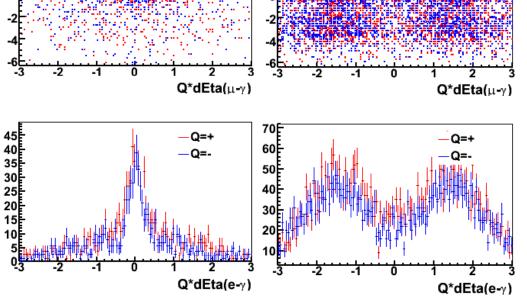
		Signal		Background	
		$Z\gamma$	Z+FSR_ γ	Z+fake_ γ	$W(lv)\gamma$
$\ell = e$	Pre-selected	430	2760	490	44
	BDT selection	288	70	74	0
	Triggered	282	65	79	0
	NLO scaled	367 (k=1.3)			
$\ell = \mu$	Pre-selected	950	7500	790	930
	BDT selection	636	173	186	0
	Triggered	578	164	165	0
	NLO scaled	751 (k=1.3)			L

W[±]γ Radiation Zero Amplitude

ISR only

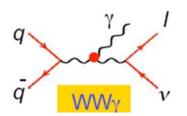
uν events

WWγ suppresses ISR production amplitude zero at


$$\cos\theta_{\bar{q}\gamma}$$
=±1/3 for W[±]

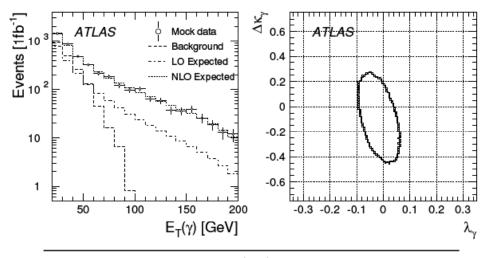
q y ISR + q y (in the property of the propert

1) NLO,
2) Anomalous coupling change cross section and fill up the gap


Comparison: ISR, ISR+WWγ of Pythia LO parton level distributions

ISR+WW[√]

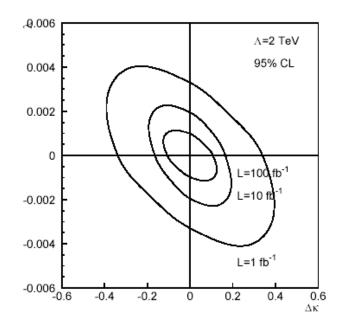
WWγ anomalous coupling



Sensitivity to WWy & Anomalous Coupling

Evaluated with $E_T(\gamma)$ of $W\gamma$ selected

ATLAS $W(\mu\nu)\gamma$, $W(e\nu)\gamma$ combined


- reweight to ds(AC)/ds(SM)
- Binned likelihood 95% CL intervals
- Λ=2 TeV, n=2

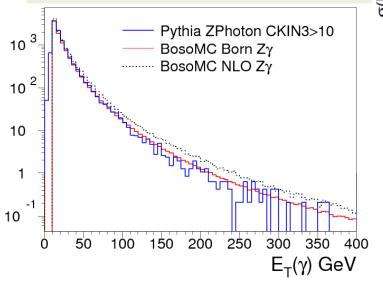
		$W(\ell v) + ISR\gamma$	
	$1 \; { m fb}^{-1}$	$10 \; { m fb^{-1}}$	$30 \; {\rm fb^{-1}}$
λ_{γ}	[-0.09, 0.04]	[-0.05, 0.02]	[-0.02,0.01]
$\Delta \kappa_{\gamma}$	[-0.43, 0.20]	[-0.26, 0.07]	[-0.11,0.05]

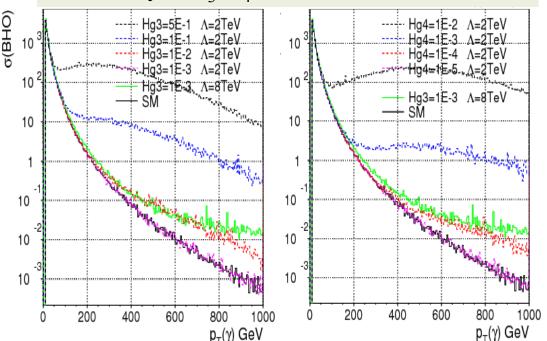
$$\Delta \kappa_{\gamma} = \Delta \kappa_{\gamma 0} / (1 + \frac{m_{W\gamma}^2}{\Lambda_{FF}^2})^n, \quad \lambda_{\gamma} = \lambda_{\gamma 0} / (1 + \frac{m_{W\gamma}^2}{\Lambda_{FF}^2})^n,$$

CMS sensitivity to WWγ 95% CL limits for 100 fb⁻¹ , Λ=2 TeV $\Delta \kappa_{\nu} < 0.1$, $\lambda_{\nu} < 0.0009$

Zy Neutral Triple Gauge boson Couplings

NTGC Anomalous Couplings

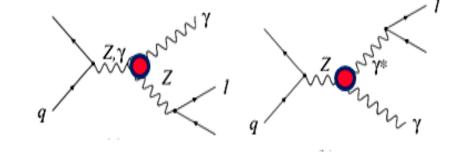

$$\begin{split} \Gamma^{\alpha\beta\mu}_{Z\gamma V}(q_1,q_2,P) &= \frac{i(P^2-M_V^2)}{M_Z^2} \Big[h_1^V(q_2^\mu g^{\alpha\beta} - q_2^\alpha g^{\mu\beta}) + \frac{h_2^V}{M_Z^2} P^\alpha ((P.q_2) q^{\mu\beta} - q_2^\mu P^\beta) \\ &\qquad \qquad - h_3^V \epsilon_{\mu\alpha\beta\rho} q_{2\rho} - \frac{h_4^V}{M_Z^2} P^\alpha \epsilon \mu\beta\rho\sigma P_\rho q_{2\sigma} \Big] \end{split}$$

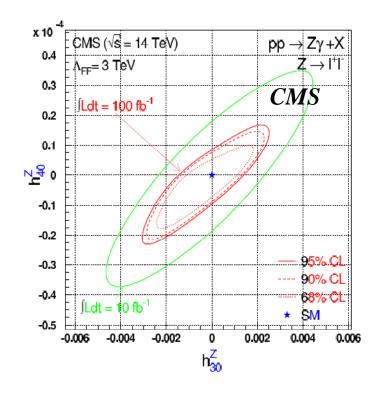

 $h_i^V(\hat{s}) = \frac{h_{i0}^V}{(1 + \frac{\hat{s}}{\Lambda^2})^n} \qquad (i = 1, 2, 3, 4)$

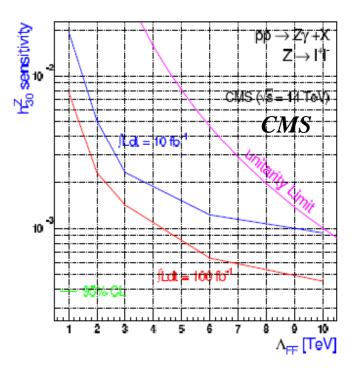
Sensitivity to h_3^{γ} , h_4^{γ} and Λ

 h_1^V , h_2^V , are P-even, violating CP h_3^V , h_4^V , are CP conserving

Pythia, Baur LO & NLO comparison @parton level


p_⊤(γ) GeV




ZZγ, Zγγ Anomalous Couplings

$\mathbf{Z}\gamma \to \ell^+\ell^-\gamma$ BDT selected $\mathbf{E}_{\mathsf{T}}(\gamma)$

- reweight spectrum by dσ(AC)/dσ(SM)
- Binned likelihood on $E_T(\gamma)$ 95% CL interval for h_i^Z , h_i^{γ}

Summary

Perspectives for SM with photons @LHC is investigated for di-boson channels of $W\gamma$, $Z\gamma$

- \rightarrow Z/W; Z/W+ γ are candles for e/ μ / γ
- \rightarrow Production rates estimated for SM $\sigma(Z\gamma)$, $\sigma(W\gamma)$
- Sensitivity to new physics is estimated for anomalous TGC of WWγ, ZZγ, Zγγ

Assuming 20% systematic uncertainties

- \rightarrow with 0.1 fb⁻¹ to establish Wy, Zy detection of significant >5 σ
- → Systematic uncertainty will dominate after 5-30 fb⁻¹

On-going investigations:

- → Monte Carlo on PDF assumption, NLO scaling
- → Detector: Luminosity, Particle ID, Calibration, jet energy