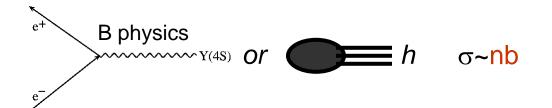
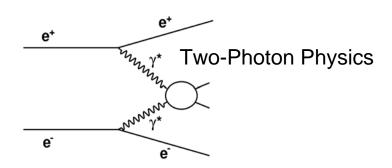
Single- and Two-Photon-Induced Processes at the B Factories

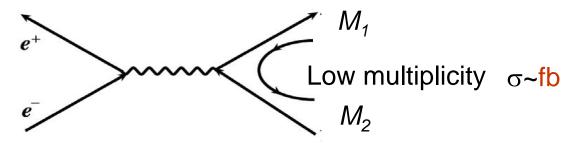
Representing the BaBar Collaboration

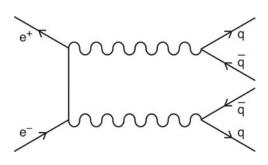
Photon 2009

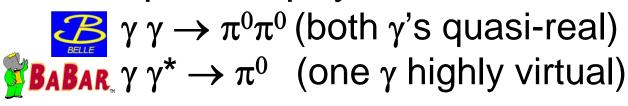
Hamburg, Germany 11-14th, May 2009

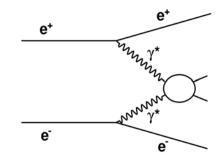

Possible Processes at the B Factories


One-photon processes C=-



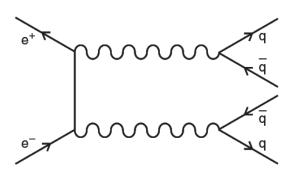

Two-photon processes

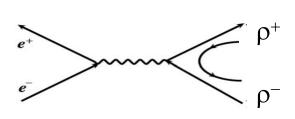


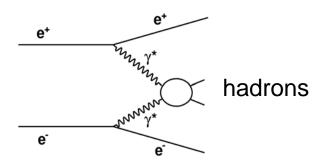

A subset of $e^+e^-\rightarrow q$ q processes; $e^+e^- \rightarrow M_1 M_2$ can also be studied via ISR; Excellent test ground for QCD

Two-Virtual-Photon-Annihilation (TVPA)

Outline

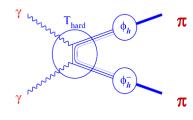

Two-photon physics:




One- or two-photon-induced e⁺ e⁻ processes:

BABAR,
$$e^+ e^- \rightarrow \rho^0 \rho^0$$
, $e^+ e^- \rightarrow \phi \rho^0$
BABAR, $e^+ e^- \rightarrow \rho^+ \rho^-$

Two-Photon Physics



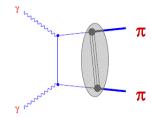
Possible Hadron Production Mechanisms in $\gamma\gamma$

- Vector Meson Dominance (VMD) model
 - The photons turn into vector mesons before interacting
- Quarks and partons
 - Particle production in γ γ interaction is primarily due to the production of quark-pairs (point-like $q\overline{q}$ coupling)

pQCD hard-scattering

Phys. Rev. D24, 1808 (1981)

Amplitudes factor into two parts:

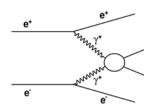

- (1) Calculable hard-scattering amplitude T_{hard} for $\gamma\gamma \rightarrow q$ q
- (2) Nonperturbative two-pion distribution amplitude ϕ_h for q $q \to \pi$ π

$$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto W_{\gamma\gamma}^{-6} \left\{ \frac{F'(\theta^*)}{(1-\cos^2\theta^*)^2} + F''(\theta^*) \right\}$$

$$\frac{\sigma(\gamma\gamma \to \pi^0\pi^0)}{\sigma(\gamma\gamma \to \pi^+\pi^-)} = 0.1$$

Handbag contribution

Phys. Lett. B532, 99 (2002)

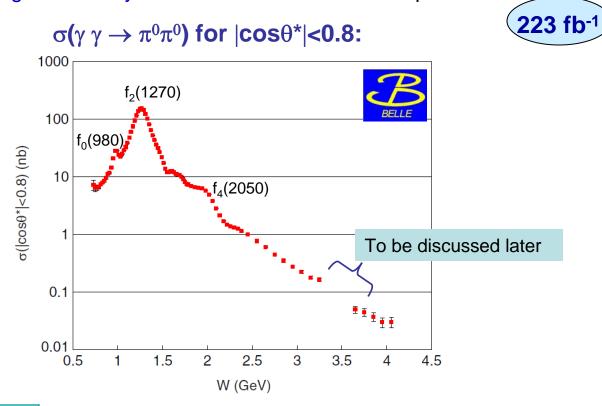

A power correction to the asymptotically leading perturbative contribution.

$$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto \frac{|R_{2M}(s)|^2}{s(1-\cos^2\theta^*)^2}$$

$$\frac{\sigma(\gamma\gamma \to \pi^0\pi^0)}{\sigma(\gamma\gamma \to \pi^+\pi^-)} \neq 0.5$$
Note: isospin invariance for pure I=0 also gives 0.5

Three Different Kinematical Conditions

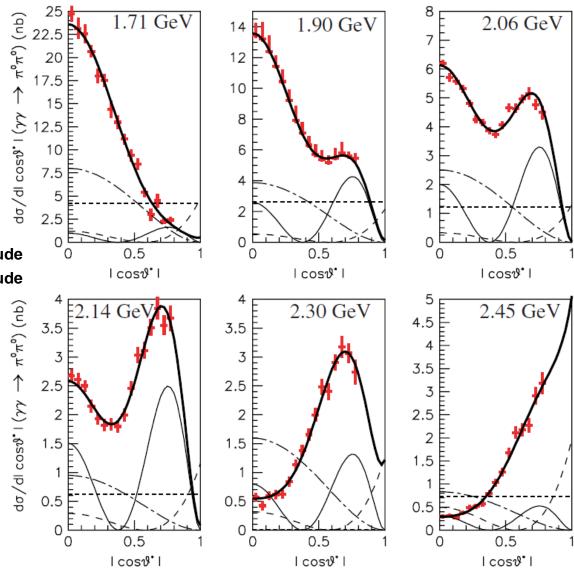
- > Double-tag: the scattered e⁺ and e⁻ are both detected
 - ❖ Full kinematic information available
 - ❖Ideal for two-photon physics
 - ❖Lack of experimental data



- Single-tag: only one scattered e⁺ or e⁻ is detected
 - ❖ Determination of the Q² dependence of resonance couplings or of the total cross section
 - Trade off between statistics and kinematic info; The B factories yield large data samples
- No-tag: neither the e⁺ nor the e⁻ is detected
 - ❖ Preferentially small total transverse momentum Σp_T of the detected particles \Rightarrow restrict both Q² values to be small
 - ❖Large missing mass since final state e+ and e- are not detected
 - ❖The B factories yield very large data samples

An Analysis of $\gamma\gamma \to \pi^0\pi^0$

- Study the process $\mathbf{e}^+\mathbf{e}^- \to \mathbf{e}^+\mathbf{e}^- \gamma \gamma$, where $\gamma \gamma \to \pi^0 \pi^0$ in a no-tag mode (i.e. quasi-real photons)
- Test QCD models: pQCD vs "handbag model" for hadron pair production
- Why now:
 - The virtual photon flux falls off rapidly at increasing center of mass energy W, so it had been difficult to use the two-photon reaction to study high-mass final states.
 - But, the high luminosity at the B factories makes this possible.

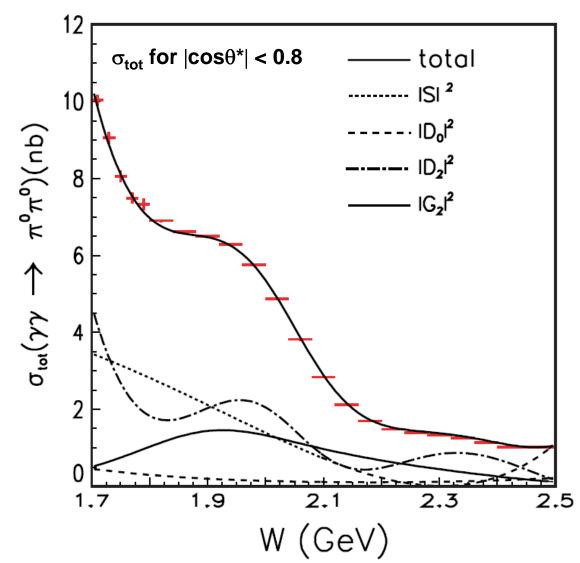

B Differential Cross Section at Low Energy

Partial Wave Analysis:

+ Data

- Fit to data using coherent superposition of S, D₀, D₂ and G₂ amplitudes
- $4\pi |D_0 Y_2^{\ 0}|^2$
- $4\pi |\mathbf{D}_2\mathbf{Y}_2|^2 \longleftarrow$ Include f_2 (1950) amplitude
- $4\pi |G_2Y_4|^2 \leftarrow$ Include $f_4(2050)$ amplitude

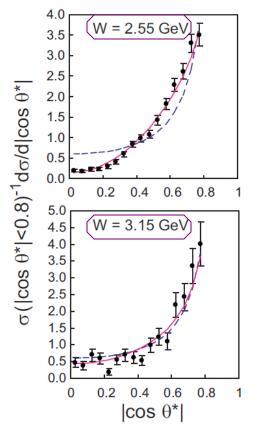
 θ^* : the π^0 scattering angle in the $\gamma\gamma$ CM frame

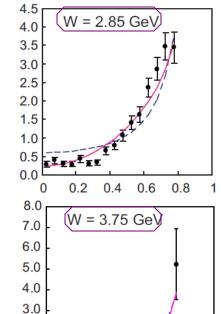


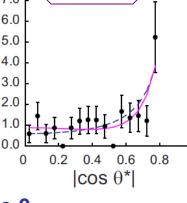
Total Cross Section at Low Energy

Partial Wave Analysis:

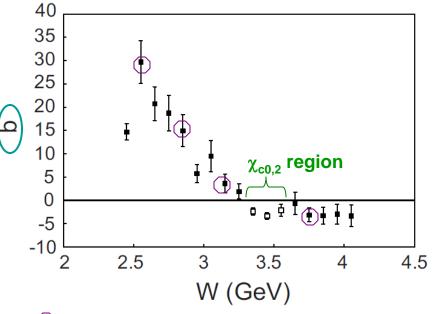
- Helicity-2 production of the f₄(2050) is favored.
- An enhancement at ~2.35 GeV is seen in the |D₂ |² term.
- Conclusions drawn from including f₂(2300) in a fit:
 - > No sensitivity
 - \gt The enhancement arises from the f₂(1950) and its interference with the G₂ wave and underlying continuum.




Differential Cross Section at High Energy


The fit function is parameterized as:

$$d\sigma/d|\cos\theta^*| = a(\sin^{-4}\theta^* + b\cos^2\theta^*)$$



Selina Li

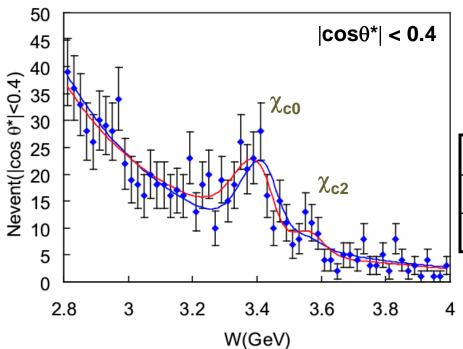
b is fixed to 0 b is free in the fit

- Points correspond to fits shown on the left
- The angular distribution of the differential cross section approaches $\sim \sin^{-4}\theta^*$ for W>3.1 GeV

Predictions:

$$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto W_{\gamma}^{-6} \left\{ \frac{F'(\theta^*)}{(1-\cos^2\theta^*)^2} + F''(\theta^*) \right\} \quad \text{(pQCD)}$$

$$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto \frac{|R_{2M}(s)|^2}{s(1-\cos^2\theta^*)^2}$$
 (Handbag model)


 $\pi^0\pi^0$

 $\pi^+\pi^-$

Without

The χ_{c0} and χ_{c2} Region

Charmonium production: $\gamma \gamma \rightarrow \chi_{c0}$, $\chi_{c2} \rightarrow \pi^0 \pi^0$

Fits with and without an interference between χ_{c0} and continuum

Statistical significance of the resonances:

	w/ interference	w/o interference
χ_{c0}	7.6 σ	7.3 σ
χ_{c2}	2.6 σ	1.3 σ

Interference	$\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c0})$ (eV)	$\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c2}) \text{ (eV)}$
Without	$9.7 \pm 1.5 \pm 1.2$	$0.18^{+0.15}_{-0.14} \pm 0.08$
With	$9.9^{+5.8}_{-4.0} \pm 1.6$	$0.48 \pm 0.18 \pm 0.07 \pm 0.14$

PRD79, 05229 (2009)

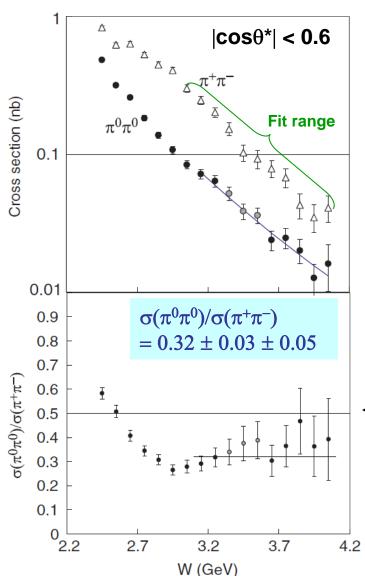
Expectation from isospin invariance:

 $\pi^0\pi^0$: $\pi^+\pi^- = 1 : 2$

 $15.1 \pm 2.1 \pm 2.3$

† †
stat. syst.

 $0.76 \pm 0.14 \pm 0.11$


Phys. Lett. B615, 39 (2005)

interference

Cross Section at High Energy

 \triangleright Fit the cross section with $\sigma \sim W^{-n}$

$$\pi^0\pi^0\text{: } n = 6.9 \pm 0.6 \pm 0.7 \text{ (3.1 < W < 4.1 GeV, exclude 3.3 < W < 3.6 GeV)}$$

$$\pi^+\pi^-\text{: } n = 7.9 \pm 0.4 \pm 1.5 \text{ (3.0 < W < 4.1 GeV)}$$

- > pQCD prediction: σ ~ W⁻⁻⁻
- ➤ The ratio of the cross section is almost constant for W > 3.1GeV

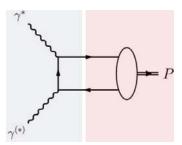
Expectation from isospin invariance for pure I = 0

Theoretical predictions for $\sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-)$:

```
0.03-0.07 (Leading term QCD) Nucl. Phys. B329, 285 (1990)

(pQCD) Phys. Rev. D24, 1808 (1981)

("handbag") Phys. Lett. B532, 99 (2002)
```



An Analysis of $\gamma \gamma^* \to \pi^0$

• We study the process $e^+e^- \rightarrow e^+e^- \gamma \gamma^*$, where $\gamma \gamma^* \rightarrow \pi^0$ in the single-tag mode:

• The differential cross section for this process depends on only one form factor $F(Q^2) = \int T(x,Q^2) \phi_{\pi}(x,Q^2) dx$.

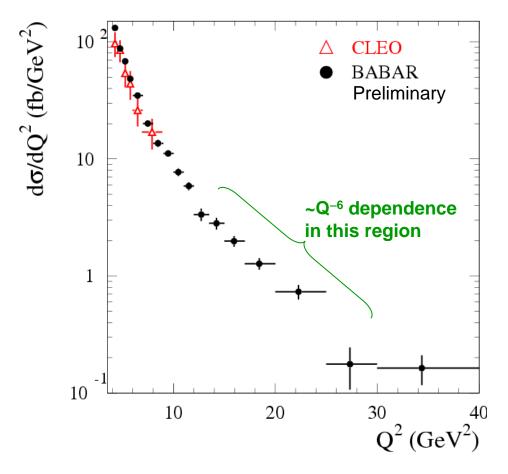
Calculable hardscattering amplitude for $\gamma\gamma \rightarrow q$ q Nonperturbative pion distribution amplitude (DA) for $q \rightarrow \pi$

(x = fraction of the π^0 momentum carried by one of the quarks)

• Experimental data on $F(Q^2)$ help determine the unknown dependence on x for $\phi_{\pi}(x, Q^2)$.

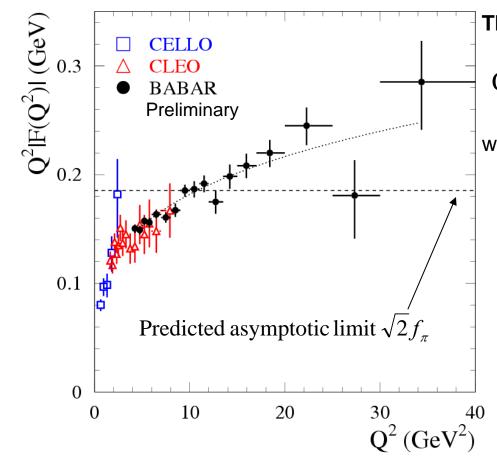
In lowest order QCD:
$$Q^2 F(Q^2) = \frac{\sqrt{2} f_{\pi}}{3} \int_0^1 \frac{dx}{x} \phi_{\pi}(x, Q^2) + O(\alpha_s) + O\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)$$

BABAR The Final State $\gamma\gamma$ Mass Spectrum 442 fb-1


- The fit function is a sum of signal + background distributions:
 - Signal: convolution of Gaussian and exponential distribution
 - Background: A 1st order polynomial (black curve) or a 2nd Order polynomial (red dotted)

- $N \approx 14000 \pm 140 \text{(stat)} \pm 170 \text{ (syst)}$
- σ =7.5 ± 0.1 MeV
- Similar fitting procedure is applied in each of the 17 Q² intervals to obtain the Q² dependence of the cross section.

The Differential Cross Section



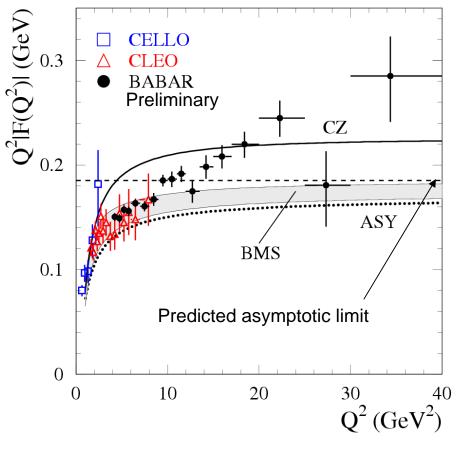
The Q²-independent systematic error is 3% which includes:

- Efficiency correction: 2.5%
- Radiative correction factor: 1%
- Integrated luminosity: 1%

The π^0 Transition Form Factor

The Q²-independent systematic error: 2.3%

The form factor multiplied by Q² is fit with:

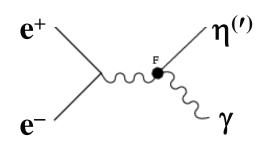

$$Q^2 |F(Q^2)| = A \left(\frac{Q^2}{10 \text{ GeV}^2}\right)^{\beta} \text{ for } 4 < Q^2 < 40 \text{ GeV}^2,$$

where A=0.182 \pm 0.002 GeV and β =0.25 \pm 0.02.

Data: $Q^2|F(Q^2)| \sim Q^{1/2}$ Leading order pQCD: $Q^2|F(Q^2)| \sim const.$ (in the asymptotic limit)

⇒ Higher order pQCD and power corrections are needed in the Q² region under study.

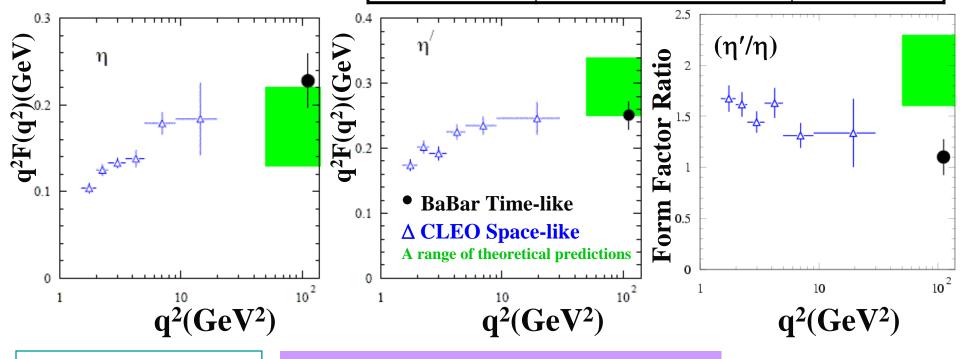
Comparison of the π^0 Transition Form Factor with Theoretical Models



The measured form factor exceeds the asymptotic limit for $Q^2 > 10 \text{ GeV}^2$, and contradicts most models for the pion DA.

- The Chernyak-Zhitnitsky DA (CZ) Nucl. Phys. B201, 492 (1982)
- The asymptotic DA (ASY) Phys. Lett. B87, 359 (1979)
- The DA derived from QCD sum rules with non-local condensates (BMS)

 Phys. Lett. B508, 279 (2001)


BABAR The η and η' Transition Form Factors

$$\sigma(e^{+}e^{-} \to \eta \gamma) = 4.5^{+1.2}_{-1.1} \pm 0.3 \, fb$$

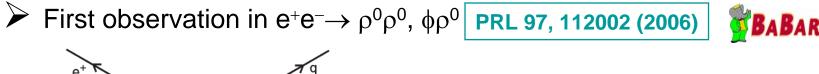
$$\sigma(e^{+}e^{-} \to \eta' \gamma) = 5.4 \pm 0.8 \pm 0.3 \, fb$$

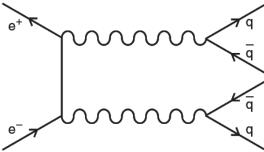
	*		,
$e^{\scriptscriptstyle \top}e^{\scriptscriptstyle \top}$	$\rightarrow \gamma$	$\rightarrow \eta \gamma$	or $\eta'\gamma$

q ² =112 GeV ²	BaBar Data	Predictions
$q^2F(\eta')$	$0.251 \pm 0.019 \pm 0.008$	0.25 - 0.34
$q^2F(\eta)$	$0.229 \pm 0.030 \pm 0.008$	0.11 - 0.22
Ratio (η'/η)	1.10 ± 0.17	1.56 – 2.27

PRD 74, 012002 (2006)

Note: Not two-photon physics processes!

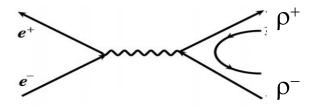

232 fb⁻¹


Selective e⁺ e⁻ Processes from Single-Photon and/or Two-Photon

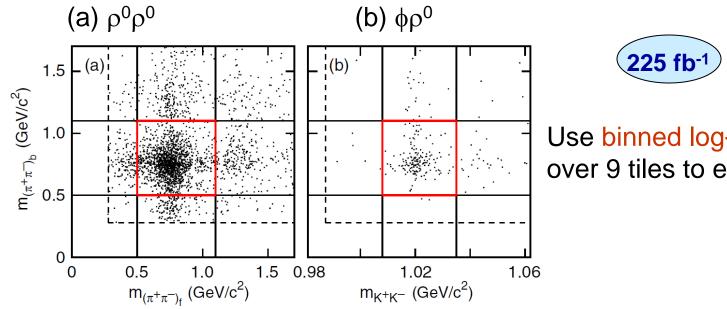
Exclusive Hadron Production at 10.58 GeV

Possible production mechanisms for e⁺e[−]→ hadrons:

- Two-Virtual-Photon-Annihilation (TVPA) ⇒ C=+1 final states



Single-Virtual-Photon-Annihilation ⇒ C=–1 final states


$$\triangleright$$
 e⁺e⁻ \rightarrow ρ ⁺ ρ ⁻

 $ightharpoonup e^+e^-
ightharpoonup \rho^+\rho^-$ PRD 78, 071103 (2008)

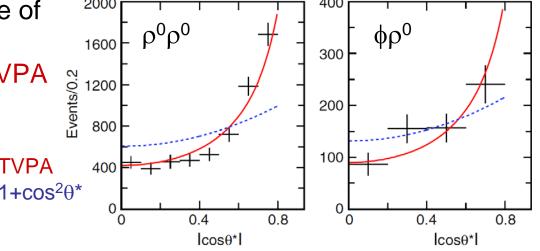
BABAR $e^+e^- o ho^0 ho^0$ and $e^+e^- o \phi ho^0$ at 10.58 GeV

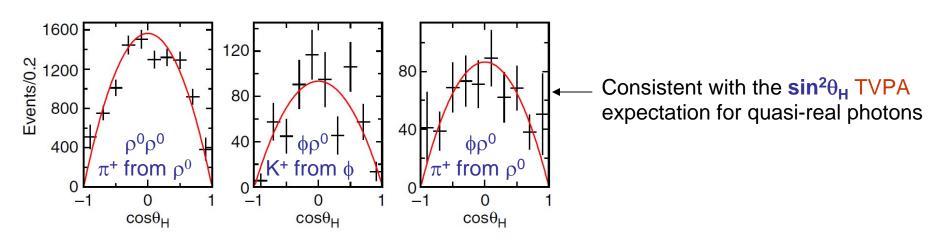
Use binned log-likelihood fit over 9 tiles to extract signal

	Yield	Significance
$\rho^0 \rho^0$	1243 ± 43	>> 5σ
$\phi \rho^0$	147 ± 13	>> 5 σ

For $|\cos\theta^*| < 0.8$:

 $\sigma(\rho^0 \rho^0) = 20.7 \pm 0.7 \text{(stat)} \pm 2.7 \text{(syst)} \text{ fb}$ $\sigma(\phi \rho^0) = 5.7 \pm 0.5 \text{(stat)} \pm 0.8 \text{(syst)} \text{ fb}$ Reminder:

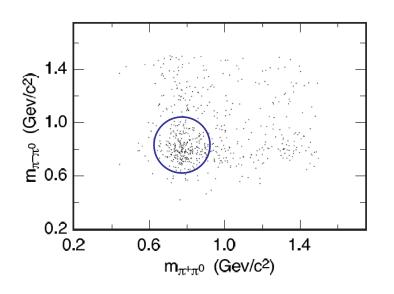

 $\sigma(e^+e^-\rightarrow hadrons @10 GeV) \sim 3 nb$

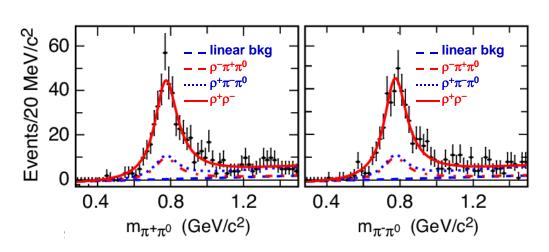

Angular Analysis of $e^+e^- \rightarrow \rho^0\rho^0$, $\phi\rho^0$

Production angle θ^* : polar angle of ϕ or ρ in CM is forward peaking, consistent with expectation for TVPA

$$\frac{d\sigma}{d\cos\theta^*} \propto \frac{1 + \cos^2\theta^*}{1 - \cos^2\theta^*}$$

Helicity angle θ_H : angle between π^+ (K⁺) and the recoil ρ^0 direction in the ρ^0 (ϕ) rest frame





BABAR Observation of e⁺e⁻ $\rightarrow \rho^+\rho^-$

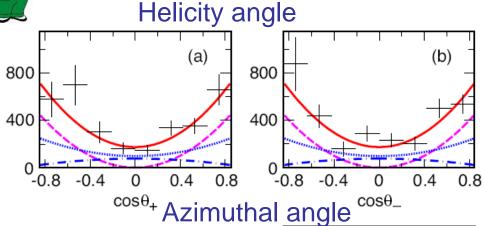
• e⁺e⁻ $\rightarrow \rho$ ⁺ ρ ⁻ is allowed via single γ * annihilation.

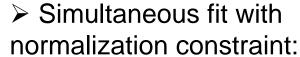
2D fits yield 357 \pm 29 events

• Assuming from 1 γ^* production:

$$\sigma(e^+e^- \to \rho^+\rho^-) = 8.3 \pm 0.7 ({\rm stat}) \pm 0.8 ({\rm syst}) \ {\rm fb} \ ({\rm for} \, |{\rm cos}\theta^*| < 0.8, \, |{\rm cos}\theta_{\rm H}| < 0.85)$$

$$\sigma(e^+e^- \to \rho^+\rho^-) = 19.5 \pm 1.6 ({\rm stat}) \pm 3.2 ({\rm syst}) \ {\rm fb} \ ({\rm extrapolated \ to \ the \ full \ angular \ range})$$

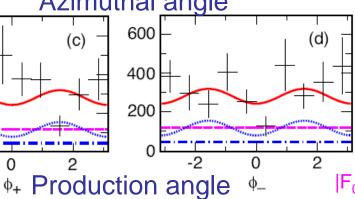



600

400

200

Amplitude Studies for $e^+e^- \rightarrow \rho^+\rho^-$



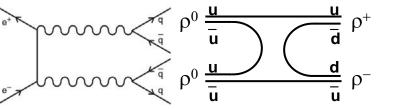
$$|F_{00}|^2 + 4|F_{10}|^2 + 2|F_{11}|^2 = 1$$

- > F₀₀ cannot explain all
- > pQCD predicted |F₀₀|≈1

Fit results:

$$|F_{00}|^2 = 0.51 \pm 0.14(stat) \pm 0.07(syst)$$
$$|F_{10}|^2 = 0.10 \pm 0.04(stat) \pm 0.01(syst)$$
$$|F_{11}|^2 = 0.04 \pm 0.03(stat) \pm 0.01(syst)$$

(e)


0.4

 $\cos \theta^*$

8.0

θ⁺

 $|F_{00}|$ <<1. Are we seeing two-virtual-photon annihilation + final-state interactions? If so, how about $B \rightarrow \rho^0 \rho^0 / \rho^+ \rho^-$, α angle!

Need to measure s-dependence of the cross section for each amplitude

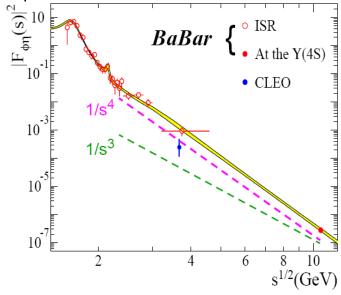
FSI?

Arbitrary Units

600

400

200


-0.4

Another Test of QCD

- Studies of low multiplicity final states can provide an excellent test ground for QCD.
- e⁺e⁻→ ρ⁺ρ⁻ via ISR will give a measurement of energy-dependence.
- An example: combine results from

PRD 77, 092002 (2008)

- \Leftrightarrow exclusive production of e⁺e⁻ \rightarrow $\phi\eta$ at 10.58 GeV | PRD-RC 74, 111103 (2006)
- ⇒ a test of QCD prediction: data consistent with 1/s⁴ asymptotic behavior for |FF|²

Summary and Conclusions

- The high luminosity from the B factories has (re)opened several interesting areas of hadronic physics.
- Two-Photon Physics
 - ▶ Belle measured the cross section and its angular dependence for $\gamma\gamma \rightarrow \pi^0\pi^0$ in the kinematic range 0.6 < W < 4.1 GeV and $|\cos\theta^*|$ < 0.8 in a no-tag analysis.
 - ► BaBar measured the $\gamma\gamma$ → π^0 transition form factor in a single-tag analysis.
- Other Single- and two-photon induced e⁺e⁻ processes
 - BaBar measured the cross sections and angular amplitudes for
 - $e^+e^-\to \rho^0\rho^0$, $e^+e^-\to \phi\rho^0$ (first observation of Two-Virtual-Photon-Annihilation)
 - $e^+e^-\rightarrow \rho^+\rho^-$ (should be a one virtual photon process, but amplitude results suggested potential interference effects).
- Other possible final states should be explored to make use of the large datasets available at the B factories.

Selina Li