Single- and Two-Photon-Induced Processes at the B Factories Representing the BaBar Collaboration Photon 2009 Hamburg, Germany 11-14th, May 2009 ## Possible Processes at the B Factories ## One-photon processes C=- ### **Two-photon processes** A subset of $e^+e^-\rightarrow q$ q processes; $e^+e^- \rightarrow M_1 M_2$ can also be studied via ISR; Excellent test ground for QCD Two-Virtual-Photon-Annihilation (TVPA) # **Outline** Two-photon physics: One- or two-photon-induced e⁺ e⁻ processes: BABAR, $$e^+ e^- \rightarrow \rho^0 \rho^0$$, $e^+ e^- \rightarrow \phi \rho^0$ BABAR, $e^+ e^- \rightarrow \rho^+ \rho^-$ # **Two-Photon Physics** ## Possible Hadron Production Mechanisms in $\gamma\gamma$ - Vector Meson Dominance (VMD) model - The photons turn into vector mesons before interacting - Quarks and partons - Particle production in γ γ interaction is primarily due to the production of quark-pairs (point-like $q\overline{q}$ coupling) ## pQCD hard-scattering Phys. Rev. D24, 1808 (1981) **Amplitudes factor into two parts:** - (1) Calculable hard-scattering amplitude T_{hard} for $\gamma\gamma \rightarrow q$ q - (2) Nonperturbative two-pion distribution amplitude ϕ_h for q $q \to \pi$ π $$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto W_{\gamma\gamma}^{-6} \left\{ \frac{F'(\theta^*)}{(1-\cos^2\theta^*)^2} + F''(\theta^*) \right\}$$ $$\frac{\sigma(\gamma\gamma \to \pi^0\pi^0)}{\sigma(\gamma\gamma \to \pi^+\pi^-)} = 0.1$$ #### Handbag contribution Phys. Lett. B532, 99 (2002) A power correction to the asymptotically leading perturbative contribution. $$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto \frac{|R_{2M}(s)|^2}{s(1-\cos^2\theta^*)^2}$$ $$\frac{\sigma(\gamma\gamma \to \pi^0\pi^0)}{\sigma(\gamma\gamma \to \pi^+\pi^-)} \neq 0.5$$ Note: isospin invariance for pure I=0 also gives 0.5 ## **Three Different Kinematical Conditions** - > Double-tag: the scattered e⁺ and e⁻ are both detected - ❖ Full kinematic information available - ❖Ideal for two-photon physics - ❖Lack of experimental data - Single-tag: only one scattered e⁺ or e⁻ is detected - ❖ Determination of the Q² dependence of resonance couplings or of the total cross section - Trade off between statistics and kinematic info; The B factories yield large data samples - No-tag: neither the e⁺ nor the e⁻ is detected - ❖ Preferentially small total transverse momentum Σp_T of the detected particles \Rightarrow restrict both Q² values to be small - ❖Large missing mass since final state e+ and e- are not detected - ❖The B factories yield very large data samples ## An Analysis of $\gamma\gamma \to \pi^0\pi^0$ - Study the process $\mathbf{e}^+\mathbf{e}^- \to \mathbf{e}^+\mathbf{e}^- \gamma \gamma$, where $\gamma \gamma \to \pi^0 \pi^0$ in a no-tag mode (i.e. quasi-real photons) - Test QCD models: pQCD vs "handbag model" for hadron pair production - Why now: - The virtual photon flux falls off rapidly at increasing center of mass energy W, so it had been difficult to use the two-photon reaction to study high-mass final states. - But, the high luminosity at the B factories makes this possible. ## B Differential Cross Section at Low Energy #### **Partial Wave Analysis:** #### + Data - Fit to data using coherent superposition of S, D₀, D₂ and G₂ amplitudes - $4\pi |D_0 Y_2^{\ 0}|^2$ - $4\pi |\mathbf{D}_2\mathbf{Y}_2|^2 \longleftarrow$ Include f_2 (1950) amplitude - $4\pi |G_2Y_4|^2 \leftarrow$ Include $f_4(2050)$ amplitude θ^* : the π^0 scattering angle in the $\gamma\gamma$ CM frame ## Total Cross Section at Low Energy #### **Partial Wave Analysis:** - Helicity-2 production of the f₄(2050) is favored. - An enhancement at ~2.35 GeV is seen in the |D₂ |² term. - Conclusions drawn from including f₂(2300) in a fit: - > No sensitivity - \gt The enhancement arises from the f₂(1950) and its interference with the G₂ wave and underlying continuum. # Differential Cross Section at High Energy ### The fit function is parameterized as: $$d\sigma/d|\cos\theta^*| = a(\sin^{-4}\theta^* + b\cos^2\theta^*)$$ Selina Li b is fixed to 0 b is free in the fit - Points correspond to fits shown on the left - The angular distribution of the differential cross section approaches $\sim \sin^{-4}\theta^*$ for W>3.1 GeV #### **Predictions:** $$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto W_{\gamma}^{-6} \left\{ \frac{F'(\theta^*)}{(1-\cos^2\theta^*)^2} + F''(\theta^*) \right\} \quad \text{(pQCD)}$$ $$\frac{d\sigma(\pi\pi)}{d|\cos\theta^*|} \propto \frac{|R_{2M}(s)|^2}{s(1-\cos^2\theta^*)^2}$$ (Handbag model) $\pi^0\pi^0$ $\pi^+\pi^-$ Without # The χ_{c0} and χ_{c2} Region ## Charmonium production: $\gamma \gamma \rightarrow \chi_{c0}$, $\chi_{c2} \rightarrow \pi^0 \pi^0$ Fits with and without an interference between χ_{c0} and continuum #### **Statistical significance of the resonances:** | | w/ interference | w/o interference | |-------------|-----------------|------------------| | χ_{c0} | 7.6 σ | 7.3 σ | | χ_{c2} | 2.6 σ | 1.3 σ | | Interference | $\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c0})$ (eV) | $\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c2}) \text{ (eV)}$ | |--------------|--|--| | Without | $9.7 \pm 1.5 \pm 1.2$ | $0.18^{+0.15}_{-0.14} \pm 0.08$ | | With | $9.9^{+5.8}_{-4.0} \pm 1.6$ | $0.48 \pm 0.18 \pm 0.07 \pm 0.14$ | PRD79, 05229 (2009) **Expectation from isospin invariance:** $\pi^0\pi^0$: $\pi^+\pi^- = 1 : 2$ $15.1 \pm 2.1 \pm 2.3$ † † stat. syst. $0.76 \pm 0.14 \pm 0.11$ Phys. Lett. B615, 39 (2005) interference ## Cross Section at High Energy \triangleright Fit the cross section with $\sigma \sim W^{-n}$ $$\pi^0\pi^0\text{: } n = 6.9 \pm 0.6 \pm 0.7 \text{ (3.1 < W < 4.1 GeV, exclude 3.3 < W < 3.6 GeV)}$$ $$\pi^+\pi^-\text{: } n = 7.9 \pm 0.4 \pm 1.5 \text{ (3.0 < W < 4.1 GeV)}$$ - > pQCD prediction: σ ~ W⁻⁻⁻ - ➤ The ratio of the cross section is almost constant for W > 3.1GeV Expectation from isospin invariance for pure I = 0 Theoretical predictions for $\sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-)$: ``` 0.03-0.07 (Leading term QCD) Nucl. Phys. B329, 285 (1990) (pQCD) Phys. Rev. D24, 1808 (1981) ("handbag") Phys. Lett. B532, 99 (2002) ``` ## An Analysis of $\gamma \gamma^* \to \pi^0$ • We study the process $e^+e^- \rightarrow e^+e^- \gamma \gamma^*$, where $\gamma \gamma^* \rightarrow \pi^0$ in the single-tag mode: • The differential cross section for this process depends on only one form factor $F(Q^2) = \int T(x,Q^2) \phi_{\pi}(x,Q^2) dx$. Calculable hardscattering amplitude for $\gamma\gamma \rightarrow q$ q Nonperturbative pion distribution amplitude (DA) for $q \rightarrow \pi$ (x = fraction of the π^0 momentum carried by one of the quarks) • Experimental data on $F(Q^2)$ help determine the unknown dependence on x for $\phi_{\pi}(x, Q^2)$. In lowest order QCD: $$Q^2 F(Q^2) = \frac{\sqrt{2} f_{\pi}}{3} \int_0^1 \frac{dx}{x} \phi_{\pi}(x, Q^2) + O(\alpha_s) + O\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)$$ # BABAR The Final State $\gamma\gamma$ Mass Spectrum 442 fb-1 - The fit function is a sum of signal + background distributions: - Signal: convolution of Gaussian and exponential distribution - Background: A 1st order polynomial (black curve) or a 2nd Order polynomial (red dotted) - $N \approx 14000 \pm 140 \text{(stat)} \pm 170 \text{ (syst)}$ - σ =7.5 ± 0.1 MeV - Similar fitting procedure is applied in each of the 17 Q² intervals to obtain the Q² dependence of the cross section. ## The Differential Cross Section The Q²-independent systematic error is 3% which includes: - Efficiency correction: 2.5% - Radiative correction factor: 1% - Integrated luminosity: 1% ## The π^0 Transition Form Factor The Q²-independent systematic error: 2.3% The form factor multiplied by Q² is fit with: $$Q^2 |F(Q^2)| = A \left(\frac{Q^2}{10 \text{ GeV}^2}\right)^{\beta} \text{ for } 4 < Q^2 < 40 \text{ GeV}^2,$$ where A=0.182 \pm 0.002 GeV and β =0.25 \pm 0.02. Data: $Q^2|F(Q^2)| \sim Q^{1/2}$ Leading order pQCD: $Q^2|F(Q^2)| \sim const.$ (in the asymptotic limit) ⇒ Higher order pQCD and power corrections are needed in the Q² region under study. # Comparison of the π^0 Transition Form Factor with Theoretical Models The measured form factor exceeds the asymptotic limit for $Q^2 > 10 \text{ GeV}^2$, and contradicts most models for the pion DA. - The Chernyak-Zhitnitsky DA (CZ) Nucl. Phys. B201, 492 (1982) - The asymptotic DA (ASY) Phys. Lett. B87, 359 (1979) - The DA derived from QCD sum rules with non-local condensates (BMS) Phys. Lett. B508, 279 (2001) ## BABAR The η and η' Transition Form Factors $$\sigma(e^{+}e^{-} \to \eta \gamma) = 4.5^{+1.2}_{-1.1} \pm 0.3 \, fb$$ $$\sigma(e^{+}e^{-} \to \eta' \gamma) = 5.4 \pm 0.8 \pm 0.3 \, fb$$ | | * | | , | |--|----------------------|---------------------------|------------------| | $e^{\scriptscriptstyle \top}e^{\scriptscriptstyle \top}$ | $\rightarrow \gamma$ | $\rightarrow \eta \gamma$ | or $\eta'\gamma$ | | q ² =112 GeV ² | BaBar Data | Predictions | |--------------------------------------|-----------------------------|-------------| | $q^2F(\eta')$ | $0.251 \pm 0.019 \pm 0.008$ | 0.25 - 0.34 | | $q^2F(\eta)$ | $0.229 \pm 0.030 \pm 0.008$ | 0.11 - 0.22 | | Ratio (η'/η) | 1.10 ± 0.17 | 1.56 – 2.27 | PRD 74, 012002 (2006) Note: Not two-photon physics processes! 232 fb⁻¹ # Selective e⁺ e⁻ Processes from Single-Photon and/or Two-Photon ## **Exclusive Hadron Production at 10.58 GeV** ## Possible production mechanisms for e⁺e[−]→ hadrons: - Two-Virtual-Photon-Annihilation (TVPA) ⇒ C=+1 final states Single-Virtual-Photon-Annihilation ⇒ C=–1 final states $$\triangleright$$ e⁺e⁻ \rightarrow ρ ⁺ ρ ⁻ $ightharpoonup e^+e^- ightharpoonup \rho^+\rho^-$ PRD 78, 071103 (2008) # **BABAR** $e^+e^- o ho^0 ho^0$ and $e^+e^- o \phi ho^0$ at 10.58 GeV Use binned log-likelihood fit over 9 tiles to extract signal | | Yield | Significance | |-----------------|-----------|---------------| | $\rho^0 \rho^0$ | 1243 ± 43 | >> 5σ | | $\phi \rho^0$ | 147 ± 13 | >> 5 σ | For $|\cos\theta^*| < 0.8$: $\sigma(\rho^0 \rho^0) = 20.7 \pm 0.7 \text{(stat)} \pm 2.7 \text{(syst)} \text{ fb}$ $\sigma(\phi \rho^0) = 5.7 \pm 0.5 \text{(stat)} \pm 0.8 \text{(syst)} \text{ fb}$ Reminder: $\sigma(e^+e^-\rightarrow hadrons @10 GeV) \sim 3 nb$ # Angular Analysis of $e^+e^- \rightarrow \rho^0\rho^0$, $\phi\rho^0$ **Production angle** θ^* : polar angle of ϕ or ρ in CM is forward peaking, consistent with expectation for TVPA $$\frac{d\sigma}{d\cos\theta^*} \propto \frac{1 + \cos^2\theta^*}{1 - \cos^2\theta^*}$$ **Helicity angle** θ_H : angle between π^+ (K⁺) and the recoil ρ^0 direction in the ρ^0 (ϕ) rest frame # BABAR Observation of e⁺e⁻ $\rightarrow \rho^+\rho^-$ • e⁺e⁻ $\rightarrow \rho$ ⁺ ρ ⁻ is allowed via single γ * annihilation. ## 2D fits yield 357 \pm 29 events • Assuming from 1 γ^* production: $$\sigma(e^+e^- \to \rho^+\rho^-) = 8.3 \pm 0.7 ({\rm stat}) \pm 0.8 ({\rm syst}) \ {\rm fb} \ ({\rm for} \, |{\rm cos}\theta^*| < 0.8, \, |{\rm cos}\theta_{\rm H}| < 0.85)$$ $$\sigma(e^+e^- \to \rho^+\rho^-) = 19.5 \pm 1.6 ({\rm stat}) \pm 3.2 ({\rm syst}) \ {\rm fb} \ ({\rm extrapolated \ to \ the \ full \ angular \ range})$$ 600 400 200 ## Amplitude Studies for $e^+e^- \rightarrow \rho^+\rho^-$ $$|F_{00}|^2 + 4|F_{10}|^2 + 2|F_{11}|^2 = 1$$ - > F₀₀ cannot explain all - > pQCD predicted |F₀₀|≈1 ### Fit results: $$|F_{00}|^2 = 0.51 \pm 0.14(stat) \pm 0.07(syst)$$ $$|F_{10}|^2 = 0.10 \pm 0.04(stat) \pm 0.01(syst)$$ $$|F_{11}|^2 = 0.04 \pm 0.03(stat) \pm 0.01(syst)$$ (e) 0.4 $\cos \theta^*$ 8.0 θ⁺ $|F_{00}|$ <<1. Are we seeing two-virtual-photon annihilation + final-state interactions? If so, how about $B \rightarrow \rho^0 \rho^0 / \rho^+ \rho^-$, α angle! Need to measure s-dependence of the cross section for each amplitude FSI? **Arbitrary Units** 600 400 200 -0.4 # Another Test of QCD - Studies of low multiplicity final states can provide an excellent test ground for QCD. - e⁺e⁻→ ρ⁺ρ⁻ via ISR will give a measurement of energy-dependence. - An example: combine results from PRD 77, 092002 (2008) - \Leftrightarrow exclusive production of e⁺e⁻ \rightarrow $\phi\eta$ at 10.58 GeV | PRD-RC 74, 111103 (2006) - ⇒ a test of QCD prediction: data consistent with 1/s⁴ asymptotic behavior for |FF|² # Summary and Conclusions - The high luminosity from the B factories has (re)opened several interesting areas of hadronic physics. - Two-Photon Physics - ▶ Belle measured the cross section and its angular dependence for $\gamma\gamma \rightarrow \pi^0\pi^0$ in the kinematic range 0.6 < W < 4.1 GeV and $|\cos\theta^*|$ < 0.8 in a no-tag analysis. - ► BaBar measured the $\gamma\gamma$ → π^0 transition form factor in a single-tag analysis. - Other Single- and two-photon induced e⁺e⁻ processes - BaBar measured the cross sections and angular amplitudes for - $e^+e^-\to \rho^0\rho^0$, $e^+e^-\to \phi\rho^0$ (first observation of Two-Virtual-Photon-Annihilation) - $e^+e^-\rightarrow \rho^+\rho^-$ (should be a one virtual photon process, but amplitude results suggested potential interference effects). - Other possible final states should be explored to make use of the large datasets available at the B factories. Selina Li