Research with Real Photons at DESY – An Overview

Photon science at DESY

Edgar Weckert Photon 2009 Hamburg, 13 May 2009

Source parameters

Equilibrium characteristics of a storage ring:

- horizontal emittance: $\varepsilon_x = \sigma_x \sigma_{x'} \approx E^2/NB^3$
 - $σ_x$: RMS beam size; $σ_x$: RMS beam divergence E: particle energy; NB: no. of dispersive elements (bending magnets)
- vertical emittance: $\varepsilon_v = \sigma_v \sigma_{v'} = \kappa \varepsilon_x$; κ : horiz./vert. coupling

Radiation source properties:

- flux: F [ph/(s 0.1%BW)]
- brilliance: B=F/($(2\pi)^2\sigma_{Tx}\sigma_{Tx'}\sigma_{Ty'}\sigma_{Ty'}$) [ph/(s mm²mrad²0.1%BW)]
- coherent flux: $F_c = B(\lambda/2)^2$ [ph/(s 0.1% BW)]
- 'large' samples (mm-size): flux limited
- 'small' samples or sample areas: brilliance limited

DESY

Edgar Weckert | Photon 2009 | 13, May 2009 | Page 3

Brilliance development

2nd generation: DORIS III

- larger emittance
- high flux
- large beams
- relatively large samples

3rd generation: PETRA III

- small emittance
- high brilliance
- small beams (-focus)
- small (nanoscale) samples

DESY

- rebuild of 1/8 of the 2304m circumference
- refurbishment of 7/8 of the storage ring
- refurbishment of pre-accelerator chain (also used by DORIS III)
- construction of a 300m long new experimental hall
- installation of 80m of damping wigglers
- top up operation mode

key parameters:

- particle energy:

6GeV 100mA (200mA)

- current: - horizontal emittance:

1 nmrad

- No. of undulators:

14 (incl. canted)

- undulator lengths:

2-10(20) m

- no bending magnet beamlines

PETRA III: Beamlines

Beamlines for PETRA III were selected according to user demands and driven by novel scientific applications in order to use the high brilliance and capabilities for μ - and nano-focusing in a best possible manner.

BL	Name	ID-Typ	Energy range	Comment	Contact
P01	NRS, ps-time resolved, IXS	10 m U	6 - 40 keV		H. Franz, DESY
P02	Hard X-ray scattering/diffraction	2 m U23	8 - 100 keV	straight	HP. Liermann, DESY
P03	Micro SAXS/WAXS	2 m U29	8 - 23 keV	down	S. Roth, DESY
P04	Variable Polarization XUV	5 m UE65	0.2 - 3.0 keV		J. Viefhaus, DESY
P05	Micro- and nano-tomography / imaging	2 m U29	5 - 50 keV	side	A. Haibel, GKSS
P06	Micro/nano-spectroscopy / fluorescence	2 m U32	2.4 - 100 keV	straight	G. Falkenberg, DESY
P07	High energy materials science and diffraction	4 m U19	50 - 250 keV		N. Schell, GKSS/DESY
P08	High resolution diffraction	2 m U29	5.4 - 30 keV	top	O. Seeck, DESY
P09	Resonant scattering / diffraction	2 m U32	2.4 - 50 keV	straight	J. Strempfer, DESY
P10	Coherence applications	5 m U29	4 - 25 keV		M. Sprung, DESY
P11	MX-diffraction / biological imaging	2 m U32	2.4 -33 keV	side	A. Meents; MPI, HGF, DESY
P12	BioSAXS	2 m U29	4 - 20 keV	straight	M. Rößle, EMBL/GKSS
P13	Macro molecular crystallography I	2 m U29	4 - 17 keV	side	M. Cianci, EMBL
P14	Macro molecular crystallography II	2 m U29	7 - 35 keV	straight	G. Bourenkov, EMBL

 high beta section
 142x5 μπ

 low beta section
 35x6 μm

DESY

PETRA III: Status Line Status

PETRA III: first light in front en

First light on April 30:

- •Undulator PU 9 (OL 142m)
- ·Single bunch 0.5 mA
- •Gap closed to 10 mm (foreseen 9.5)
- •No effect on machine (orbit / tune)
- •Beam centred with horizontal and vertical Bumps
- •Power up to 8W

Undulator gap open

Screen monitor at 17.5 m

Edgar Weckert | Photon 2009 | 13. May 2009 | Page 17

FLASH: VUV and soft X-ray FEL

FLASH: VUV free electron laser

electron energy: 1 GeV
wavelength: 6.5-47 nm
average pulse energy: 10-100 µJ
peak pulse energy: 170 µJ
pulse duration: 10-25 fs

average power

(700 pulses / s): 20 mW

peak power: 3-10 GW

peak brilliance 1-10 • 10²⁹

divergence (@13nm): 90 µrad

spectral width: 0.7-1%

Inelastic scattering under high pressure Speed of sound of Fe under pressure (ESRF: 2 ph/min) P=28GPa 12000 h.c.p. iron 11000 10000 9000 8000 7000 9000 10000 11000 12000 13000 Specific mass [kg.m-3] X ray G. Fiquet et al., Science 291 (2001) 468 Edgar Weckert | Photon 2009 | 13, May 2009 | Page 31

FLASH experiments in imaging

LETTERS

Ultrafast single-shot diffraction imaging of nanoscale dynamics

ANTON BARTY^{1,7*}, SÉBASTIEN BOUTET^{2,3}, MICHAEL J. BOGAN¹, STEFAN HAU-RIEGE¹, STEFANO MARCHESINI¹, KLAUS SOKOLOWSKI-TINTEN⁴, NIKOLA STOJANOVIC⁴, RA'ANAN TOBEY⁵, HENRI EHRKE⁵, ANDREA CAVALLERI^{5,9}, STEFAN DÜSTERER⁶, MATTHIAS FRANK¹, SAŠA BAJT^{1,8}, BRUCE W. WOODS¹, M. MARVIN SEIBERT³, JANOS HAJDU³, ROLF TREUSCH⁶ AND HENRY N. CHAPMAN1,7,8*

¹Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA

²Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025, USA

**Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden **Institut für Experimentelle Physik, Universität Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany

Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK

⁶Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85, D-22607 Hamburg, Germany

⁷Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Boulevard, Ste 1400, Sacramento, California 95817, USA *Centre for Free Electron Laser Science, Universität Hamburg at DESY, Notkestraße 85, 22607 Hamburg, Germany
*Max Planck Research Group for Structural Dynamics, Center for Free Electron Laser Science, Universität Hamburg at DESY, Notkestraße 85, 22607

*e-mail: a.bartv@llnl.gov: henry.chapman@desy.de

FLASH experiments in imaging LETTERS Figure 1 X-ray dynamic diffraction imaging, A visible-light laser beam () incident from the left is focused on a 20-ym apol in the same location putes. A 10-th destration out X-ray pute at a accentionally variable delay after the excitation putes. A 10-th destration out X-ray pute at a wavelength of 13.5 mm from the FEL (i) is focused to a 20-ym apol in the same location as the visible-light laser at a confiscionally variable delay after the excitation putes. The X-ray pute diffracts from the sample, carrying information about the transient sample structure to the ECO disease straight through a hole in the mirror and is not detected in the COD image. A 100-ym -thick throughts fill occurred to the detected in the COD image, a 100-ym -thick throught and in the same relation putes. A 45° mirror (i) is used to separate the direct beam from the diffracted light the detected in the COD image. A 100-ym -thick throught a fill of the last are relating page. The sample (i) consistent of the complex of the code of the

XFEL-Applications

Up to now mostly the static structure of matter has been investigated.

The FELs will provide unique opportunities for probing the dynamics of matter for experiments:

- with ultra high (100fs) time resolution in the Å-length wavelength range
- that exploit the transverse coherence of the photon beam
- that demand for the extreme peak brilliance

Summary

- brilliant photon beams are excellent tools for studying the structure and dynamics in a wide scientific field
- DESY photon sources are very well prepared to match future requirements in the field of photon science
 - PETRA III: high energy sources of lowest brilliance for hard X-ray applications with very small focal spot sizes
 - FLASH: VUV and soft X-ray FEL for time resolved high brilliance applications
 - European XFEL: watching molecules and atoms in real time on their intrinsic length and time scale
- DESY: establishment of a fruitful environment of photon based research

Thank you for your attention

