Analysis of the ECMWF Storage Landscape

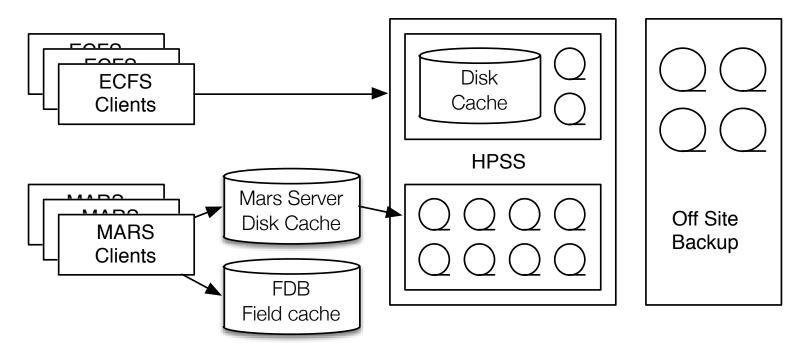
<u>Matthias Grawinkel</u>*, Lars Nagel*, Markus Mäsker*, Federico Padua*, André Brinkmann*, Lennart Sorth#

* Johannes Gutenberg University Mainz, Germany# European Centre for Medium-range Weather Forecasts, Reading, UK

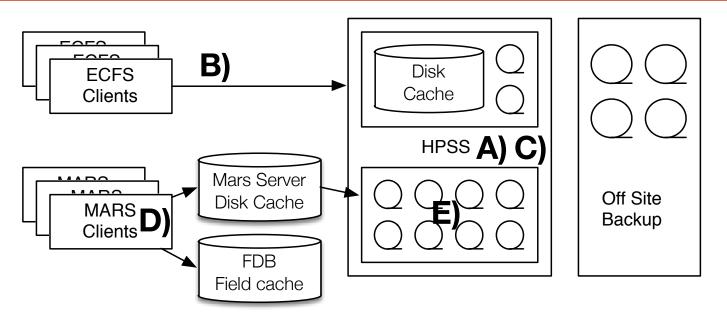
2015-02-17

European Centre for Medium-range Weather Forecasts

- Global weather forecasts for up to 15 days and seasonal forecasts for up to 12 months
- Multiple supercomputers (Top 500 Nov. 2014: 28, 29, 82, 83)
- ~100 PB total storage capacity in 2014/09
- Two in-house developed data handling systems: ECFS, MARS
- Compound annual growth rate (CAGR) > 50%


Motivation

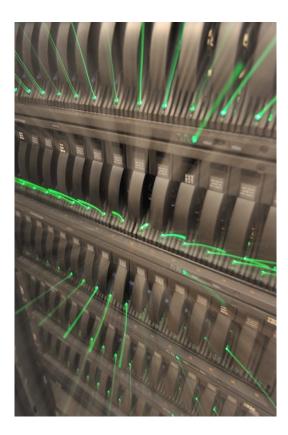
- How to build (active) archives?
 - Content & behavior of existing systems
 - Current problems?
 - Future challenges?
- Only a few studies and traces available
 - Low coverage of the research topic
 - Required to design and evaluate systems
- \rightarrow First study of large-scale active archive
 - In depth-analysis of two systems
 - Characterization of content and usage
 - Analysis of caching behavior
 - Study of tape backend
 - Release of scripts & trace files


ECMWF Storage Landscape

- ECFS is a general purpose user accessible <u>archive</u> for intermediate and long-term file storage
- MARS is an object database for meteorological data

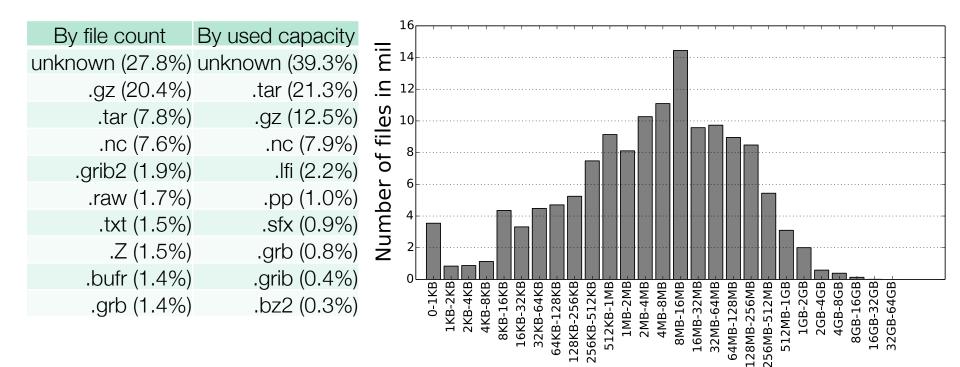
- Files are staged and cached on disk drives
- Every file eventually has a primary copy on tape
- Important files have secondary tape copy

Investigated Trace Files

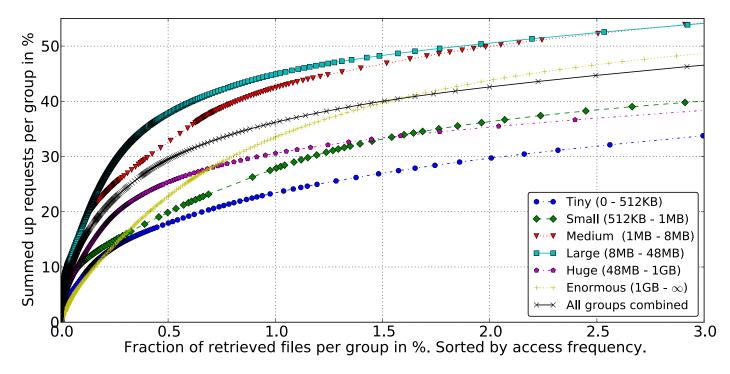

- A) ECFS / HPSS database snapshot of 2014/09
- B) ECFS access trace: 2012/01 2014/05
- C) MARS / HPSS database snapshot of 2014/09
- D) MARS feedback logs: 2010/01 2014/02
- E) HPSS WHPSS logs / robot mount logs: 2012/01 2013/12
- Extracted, sanitized, and obfuscated traces available now

Data Handling System: ECFS

- Client tools for PUT, GET, DEL, RENAME on full files
- 14.8 PB of primary data
- 137.5 mil. files in 5.5 mil. directories
- 0.34 PB disk cache (disk/tape ratio: 1:43)
 - Cache categories defined by file size


Group	From	To (incl.)	Count	Used Capacity
Tiny	0	512 KB	36.0 mil.	4.4 TB
Small	512 KB	1 MB	9.1 mil.	6.3 TB
Medium	1 MB	8 MB	29.5 mil.	101 TB
Large	8 MB	48 MB	30.0 mil.	585 TB
Huge	48 MB	1 GB	29.7 mil.	6.2 PB
Enormous	1 GB	32 GB	3.1 mil.	8 PB

ECFS Content Characterization

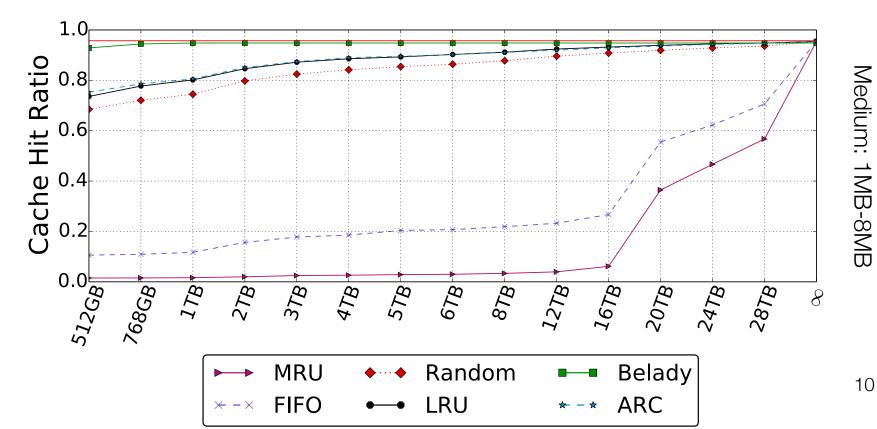

Based on HPSS database snapshot – 2014/09
 – Only 26.3 % of files on tape were ever read ≥1 times

ECFS Workload Characterization

- Timespan 2012-01-01 to 2014-05-20
 - 78.3 mil. PUT requests \rightarrow 11.8 PB
 - 38.5 mil. GET requests \rightarrow 7.2 PB
 - 12.2 mil. unique files (9% of full file corpus)
 - Cache hit ratio by requests: 86.7%
 - Cache hit ratio by bytes: 45.9%

ECFS User Sessions

- Identified 1,190 users, 2.7 mil. sessions
- Session lifetime from seconds up to 10 hours of constant traffic

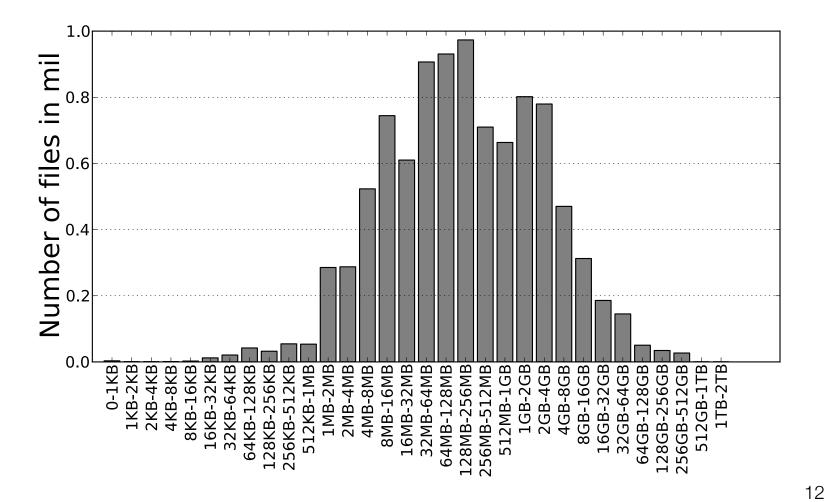

Key	Count	5th P	mean	99th P
Total #actions per session	2.7 mil.	2	47	579
Sessions with GET requests	1.1 mil.	1	36	571
- Retrieved data		0.6 MB	7.2 GB	86 GB
- #ReGET requests	0.13 mil.	1	32	442
Sessions with PUT Requests	2.3 mil.	1	34	373
- Uploaded data		0.02 MB	5.6 GB	65 GB

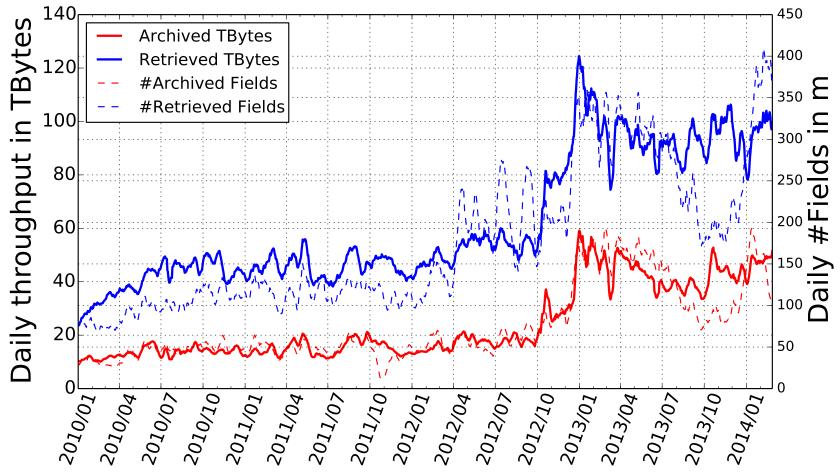
11% of GET requests within a session are re-retrievals of a file

What is the impact of smaller or bigger caches?

- Developed modular cache simulation environment
 - MRU, FIFO, RANDOM, LRU, ARC, Bélády, ECMWF baseline
 - Cache per size-category (capacity + strategy)
- Replayed ECFS access trace
 - 12 months warm up, measured following 17 months

Data Handling System: MARS

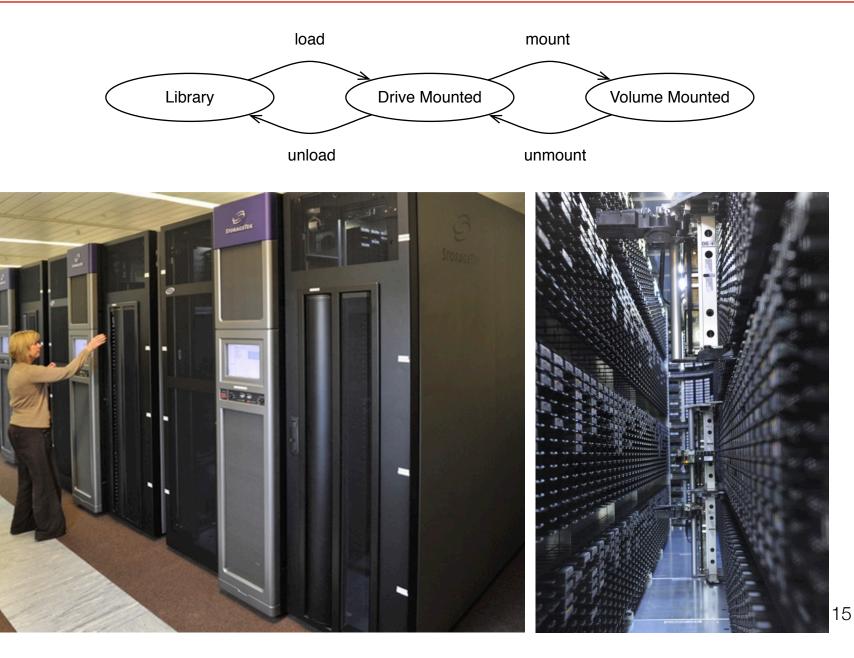

- Query: "Get temperature & humidity for Santa Clara from \$date till \$date with a 5 minute resolution"
 - MARS then assembles and writes out a results file
- 170 bil. fields in 9.7 mil. files
 - 200 mil. new fields each day (i.e. sensor data, model output)
- 37.9 PB of primary data, 800 GB metadata
- 3-tiered caching hierarchy
 - Field database (FDB) on HPC storage: Variable size <1 PB
 - 1 PB disk cache on MARS servers
 - 250 TB reserved for manual optimizations
 - HPSS/tape


MARS Content Characterization

- Based on HPSS database snapshot 2014/09
 - Only 23 % of files on tape were ever read ≥1 times

MARS Workload Characterization

- MARS feedback logs from 2010-01-01 till 2014-02-27
 - Contain queries and description of results (#fields, bytes, source)



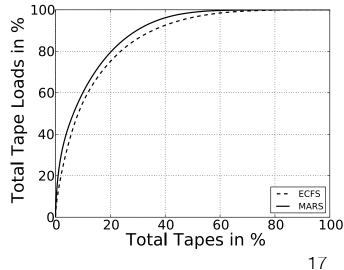
Totals over Observed Timeframe (1518 days)

Total archive requests	115 mil.		
Total archived bytes (fields)	35.9 PB (114.7 bil.)		
Total retrieve requests	1.2 bil.		
- involving \geq 1 tape loads	25.3 mil. (2.2%)		
- from HPSS/tape only	16 mil. (1.4%)		
Total retrieved bytes (fields)	91.6 PB (269 bil.)		
- from FDB bytes (fields)	54.2 PB (212 bil.)		
- from MARS/disk bytes (fields)	29.4 PB (43.3 bil.)		
- from HPSS/tape bytes (fields)	8 PB (13.3 bil.)		

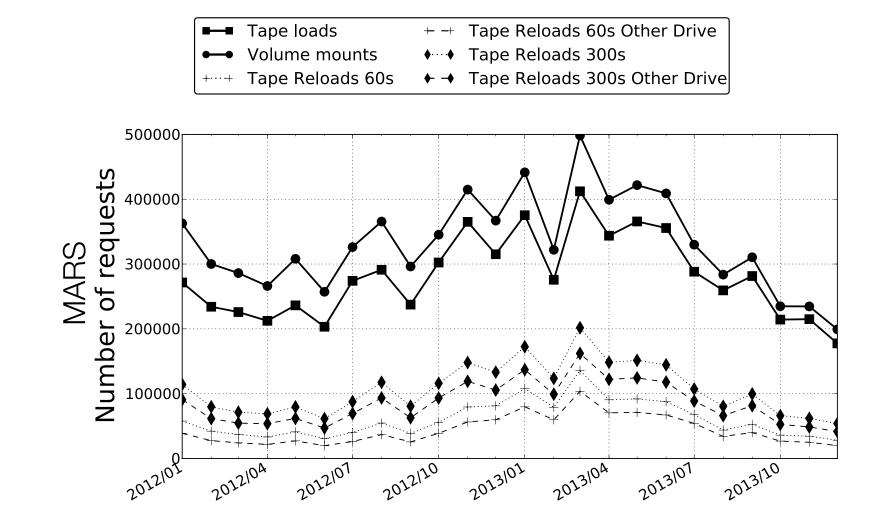
Tape Mount Logs

Tracked Tapes & Drives: 2012+2013

32,712 tape identifiers231 drive identifiers9.6 mil. tape loads~9 loads per minute


Tape is Actively Used

Tape mount frequencies				
	#tapes	median	mean	99th P
MARS	23,118	46	291	3,351
ECFS	9,594	85	297	2,470



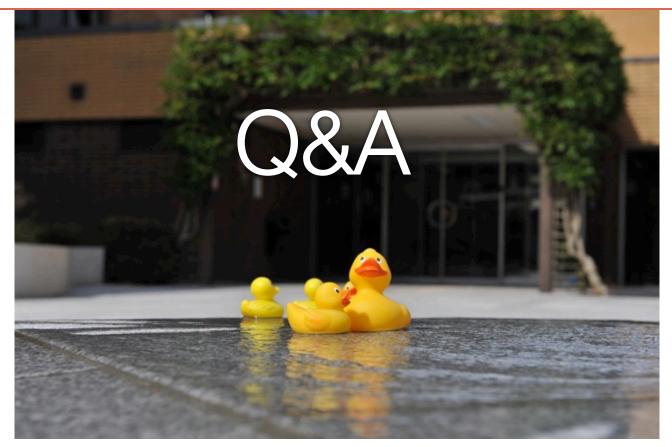
Mount requests per cartridge. Absolute (top) + normalized (bottom)

Tape mount latencies in seconds					
	#mounts	median	mean	99th P	
MARS	6.7 mil.	35	54.4	262	
ECFS	2.8 mil.	32	48.2	257	

Remounts and Reloads

14.8% of all loaded tapes were unloaded from another drive less than 60 seconds ago

Improve Tape (Un)loading?


- Goals: Minimize #drives, mean time to mount, tape mounts
 Maximize tape re-use
- Identified hot tapes: 20% of tapes account for 80% of mounts
- Analysis of drive utilization showed exploitable idling times
- Optimistic preloading?
 - Correlation analysis showed potential
- High tape reload rates suggest to keep (certain) tapes in the drives
- \rightarrow Further investigation required

Conclusion

- ECMWF in operation since 1975
 - Lots of hands-on experience
 - Predictable production workloads
 - Manual optimizations
 - Chaotic research workloads ...
- ECFS resembles archives investigated in related work
- MARS opens a new category of archives
- Tape + disk caches can be used to build efficient non-interactive systems
- Heavy use of tape has drawbacks
 - High wear-out
 - Unpredictable, stacking latencies
 - MARS-Error: Query requires too many tapes
- Potential for smarter tape (un)loading strategies

github.com/zdvresearch/fast15-paper-extras/ We're hiring: research.zdv.uni-mainz.de

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

