CALORIMETRY AT THE CMD-3 DETECTOR

Georgiy Razuvaev on behalf of the CMD-3 collaboration

BUDKER INSTITUTE OF NUCLEAR PHYSICS NOVOSIBIRSK, RUSSIA

August 2016

Outline

- ▶ VEPP-2000
- CMD-3
- Calorimeters Structure
- Cluster Reconstruction
- Electronics
- Calibrations
- Performance
- Perspectives
- Conclusion

VEPP-2000

- $\sqrt{s} = 0.3 2 \,\mathrm{GeV}$
- round beam optics
- beam current 0.2 A
- beam length 3.3 cm

beam energy spread — 0.7 MeV

 L = 1 × 10³² cm⁻²s⁻¹ at √s = 2 GeV

 L = 2 × 10³¹ cm⁻²s⁻¹ at √s = 1 GeV

CMD-3 & Physical Program

 $R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$

► $\sigma(e^+e^- \rightarrow 2h, 3h, 4h, ..),$ where $h = \pi, K, \eta, ..$

$$\blacktriangleright \rho', \rho'', \omega', \omega'', \phi', \dots$$

CVC test

- ISR: $e^+e^- \rightarrow \gamma \gamma^*$ with $\gamma^* \rightarrow hadrons$
- 2γ physics: $e^+e^- \rightarrow e^+e^- + hadrons$
- Test of high order QED: $2 \rightarrow 4, 5$

LXe Calorimeter

- Solid angle: $0.8 \times 4\pi$
- ▶ 8 cylindrical anodes: 264 towers
- ▶ 7 cylindrical cathodes: 2112 strips
- ► Thickness: 5.4 X₀

CsI calorimeter

- Solid angle: $0.7 \times 4\pi$
- 1152 counters based on CsI(TI) and CsI(Na) crystals
- Crystal size: $6 \text{ cm} \times 6 \text{ cm} \times 15 \text{ cm}$
- Thickness: 8.1 X₀

BGO calorimeter

- \blacktriangleright Polar angle range: $16^\circ \text{--}49^\circ$ and $131^\circ \text{--}164^\circ$
- Solid angle: $0.3 \times 4\pi$
- ► 680 BGO crystals
- Crystal sizes: $2.5 \text{ cm} \times 2.5 \text{ cm} \times 15 \text{ cm}$
- ► Thickness: 13.5 X₀

Calorimeter Parameters

	١Xo	Cel	l Xo+Csl	BGO	LXe+CsI
	EAC	CSI	EXC Cal		+BGO
Solid angle	$0.8 imes4\pi$	$0.7 imes4\pi$	$0.7 imes4\pi$	$0.3 imes 4\pi$	$0.94 imes 4\pi$
Thickness	5.4 X ₀	8.1 X ₀	$13.5X_0$	$13.5X_0$	
# of channels	2112 strips	1152	3518	680	4198
	254 towers				
Total mass	1200 kg	2500 kg	3700 kg	450 kg	/150 kg
	400 L				-130 Kg

 $\label{eq:Passive} \begin{array}{l} \mbox{Passive material before LXe: } 0.35\,X_0 \\ \mbox{Passive material between LXe and CsI: } 0.25\,X_0 \end{array}$

Cluster Reconstruction

Strips

Close Photons Reconstruction

Electronics Layout

Calorimeters Calibration

LXe	BCO				
LXe	Csl	BGO			
Preliminary calibration w/ a pulse generator					
Measurement of the pedestals, electronic gains and noises					
	Calibration w/ cosmic in special runs				
Calibration during data taking					
Calibration w/ cosmic					
Calibration w/ $e^+e^- ightarrow e^+e^-$		$\begin{array}{c} \mbox{Absolute energy} \\ \mbox{calibration w} / \\ e^+e^- \rightarrow \gamma\gamma \end{array}$			

Barrel Cosmic Calibration

- Cosmic particle events in experimental runs
- Tracks in LXe are used
- Path length L_{LXe}, L_{Csl}

• Calibration coefficients $k_i = \frac{E_{peak}^{MC}}{E_{peak}^{EXP}}$

Barrel $e^+e^- \rightarrow e^+e^-$ Calibration

•
$$n$$
 — event number; i, j — LXe channel indexes
• $\chi^2 = \sum_n^N \left[E_j^{MC}(\theta, \varphi) - \sum_i E_i^n k_i - E_{Csl}^n \right]^2 / \sigma^2(\theta)$
• $\chi^2 \rightarrow min$
• $\frac{\partial \chi^2}{\partial k_i} = 0 \implies \sum_j k_j Q_{ij} = R_i$
• $Q_{ij} = \sum_{n=1}^N E_i^n E_j^n / \sigma^2, R_i = \sum_{n=1}^N E_i^n E_{MC}^N / \sigma^2$
• $k_i = \sum_j R_i(Q^{-1})_{ij}$

BGO Cosmic Calibration

- Only events without charge trigger are used to suppress μ[±]'s and π[±]'s with a large angle to the vertical direction
- The main background is from shower events. To extract passage of cosmic muons through the calorimeter we use special parameters of BGO clusters (shape and energy deposition distribution)
- The efficiency of cosmic rays selection is evaluated at the level of 90%; 2 days of data taking is enough for statistical precision of 1%

Energy Resolution

LXe+CsI

- No tracks in DC are detected
- Two clusters in the barrel calorimeter
- $| heta_1 + heta_2 \pi| < 0.1$ and $|arphi_1 arphi_2| < 0.1$

•
$$0.5 < E_{1,2}^{depos} / E_{beam} < 1.05$$

•
$$\sigma_E/E = 0.034/\sqrt{E[\text{GeV}]} \oplus 0.020$$

BGO

- ▶ No hits in DC are detected
- Two most energetic clusters are collinear and in different endcaps

$$\blacktriangleright \ E_1^{depos} + E_2^{depos} > E_{beam}$$

• $\sigma_E/E = 0.024/\sqrt{E[\text{GeV}]} \oplus 0.023$

Spatial Resolution

LXe+CsI

- ► $\sigma_{\varphi, \theta}^{strips}[mrad] = 3.7 + \frac{0.33}{0.25 + E[GeV]}$ ~95 % of barrel hits
- ► $\sigma_{\varphi(\theta)}^{towers}[mrad] = 37(41) + \frac{3.6(3.5)}{100 + E[GeV]} \sim 5\%$ of barrel hits

BGO

•
$$\sigma_{\rm X}[{\rm mm}] = 0.197 \oplus \frac{3.12}{\sqrt[4]{E[{\rm GeV}]}}$$

Experimental Results

- ► The experience of development, construction, maintenance and performance of the complex calorimetry is helpful for development of the future c - τ electromagnetic calorimeter.
- The $c \tau$ factory is supposed to use a CsI(TI) calorimeter.
- The option of a liquid noble gas based calorimeter with strip read-out is a good opportunity to increase the precision of photon conversion point measurement.

Conclusion

- The calorimeters have been installed into the CMD-3 detector and participated in data tacking since 2010
- The calibration procedures of the calorimeters have been developed and used during all 3 physical seasons
- The energy reconstruction procedures has been developed and applied
- ▶ The energy resolutions at 1 GeV have been determined \sim 4.5% in the barrel calorimeter and \sim 3.5% in the endcap calorimeter
- ► The spatial resolutions at 1 GeV have been determined ~2 mm in the barrel calorimeter and ~3 mm in the endcap calorimeter

Thank you!