

VEPP-2000 control system: operational experience

Senchenko Alexander BINP

VEPP-2000

Circumference	24.388 m	Energy range	150 ÷ 1000 MeV
Number of bunches	1	Number of particles	1×10 ¹¹
Betatron tunes	4.1/2.1	Beta-functions @ IP	8.5 cm
Beam-beam parameter	0.1	Luminosity	1×10 ³² cm ⁻² s ⁻¹

Control system

- 2000 start of construction
- 2003 control system assembling
- 2006 first beam(e-)
- 2007 first luminosity
- 2010 first experimental season
- 2013 stopped for upgrade
- 2016 first beams after upgrade

- 2000 start of construction
- 2003 control system assembling
- 2006 first beam(e-)
- 2007 first luminosity
- 2010 first experimental season
- 2013 stopped for upgrade
- 2016 first beams after upgrade

VEPP-2000

Hardware

• CAMAC

- Legacy systems
- Heavy traffic (fast ADC, BPM)

CANBus

- Control and slow monitoring
 - ADC
 - TDC
 - Table DAC

Infrastructure

Private network

- Reliability
- Security
- Wi-Fi
 - Experimental hall
 - Control equipment room
 - Control room

• Linux

- Gentoo

Software

- In-house
- Open Source based
- Distributed CS
 - Text-based RPC protocol

- 2000 start of construction
- 2003 control system assembling
- 2006 first beam(e-)
- 2007 first luminosity
- 2010 first experimental season
- 2013 stopped for upgrade
- 2016 first beams after upgrade

- 2000 start of construction
- 2003 control system assembling
- 2006 first beam(e-)
- 2007 first luminosity
- 2010 first experimental season
- 2013 stopped for upgrade
- 2016 first beams after upgrade

Software

- 2000 start of construction
- 2003 control system assembling
- 2006 first beam(e-)
- 2007 first luminosity
- 2010 first experimental season
- 2013 stopped for upgrade
- 2016 first beams after upgrade

- 2000 start of construction
- 2003 control system assembling
- 2006 first beam(e-)
- 2007 first luminosity
- 2010 first experimental season
- 2013 stopped for upgrade
- 2016 first beams after upgrade

Hardware

• CAMAC

Almost removed

• CANBus

- Stable and sufficient

• Ethernet

Beam diagnostics(BPM, CCD)

Drawbacks of text-based protocol

- Performance
- Memory overhead
- Additional binary protocols

Software

- Continuous improvement
- User feed-back
 - Strong cooperation with operators
 - Participating in shifts

Infrastructure

OS Long Term Support

- Rare upgrades (1-3 years)
- Regular updates

Computers

- x86 and x64
- Outdated hardware

Network

Access to internal services

- 2000 start of construction
- 2003 control system assembling
- 2006 first beam(e-)
- 2007 first luminosity
- 2010 first experimental season
- 2013 stop for upgrade
- 2016 first beams (e-,e+)

Injection Complex integration

Control systems integration

- Synchronization system
- · Beam scheduling

Conclusion

Analysis of requirements

- Minimize changes
- Reduce technology stack
- Facilitate maintenance
- Plan further changes
- **CS framework**(TANGO,EPICS,*In-house...*)

Thank you!