uning status of the FFS for short and long L^{*} lattices

Summary

CERN-BINP Workshop

Comparative study of the tuning performances of the nominal and long L^* CLIC Final Focus system

FFS design for CLIC 380 GeV

Fabien Plassard 1,2 , Rogelio Tomás García 1

Thanks to: Andrea Latina¹, Eduardo Marin¹, Jochem Snuverink³, Ryan Bodentsein³, Marcin Patecki¹ and the MDI working group¹

¹CERN, Switzerland, Geneva ² Université Paris Sud, France, Orsay ³ John Adams Institute, UK, London

August 22nd 2016

CERN, Geneva, Switzerland

F. Plassard CERN/ Uni. Paris Sud

CERN-BINP / eCOL 2016

August 22nd 2016 1/14

- 1 The CLIC Final Focus
 - CLIC FFS
 - Motivations for longer L*
 - Parameters & Performances
- 2 Tuning status of the FFS for short and long L^* lattices
 - Tuning procedure
 - Tuning of the CLIC 380 GeV FFS : L*= 4.3 m vs L*=6 m
- 3 Summary

CLIC Final Focus System (FFS)

- The first stage of CLIC will collide e^-e^+ beams at \sqrt{s} = **380 GeV** and will be upgraded up to \sqrt{s} = **3 TeV**
- FFS ⇒ correct the chromaticity generated by the FD and deliver small beam size at the IP
- Scheme based on local chromaticity correction
- Two L* options are studied here for the first and last stage of the CLIC FFS : Nominal and Long L*

 \blacksquare The chromaticity generated by the FD scales as $\xi_y \propto L^*/eta_y^*$

Tuning status of the FFS for short and long L^{*} lattices

Summary

Motivations for longer L^*

No interplays between the solenoid field and QD0 field, reduces QD0 vibration, eases stabilization and acess to QD0, increases forward acceptance

Parameters & Performances

F. Plassard CERN/ Uni. Paris Sud

CERN-BINP / eCOL 2016

Tuning the FFS

- The tuning aims to recover the luminosity loss due to static misalignment of the optics
- CLIC FFS is very sensitive to alignment errors and the luminosity drops by several orders of magnitude when a transverse misalignment of $\sigma_{\rm RMS}$ = 10 μ m is assumed
- Tunability determine the feasibility of the FFS lattice
- Tuning effectiveness will be decisive for the final layout of the CLIC FFS

Tuning status of the FFS for short and long L^* lattices $\odot \bullet \odot \circ \odot \circ \odot$

Tuning algorithm applied

- Transverse misalignment of the quadrupoles, sextupoles and BPMs (σ_{RMS} = 10 μm)
- One-to-One correction : steer the beam through the center of all BPMs using transverse kickers (dispersion still present)

Dispersion Free Steering (DFS) :

presence of **dispersion is measured** and the kickers are used to correct it. One has to solve the following system :

$$\begin{pmatrix} b - b_0 \\ \omega(\eta - \eta_0) \\ 0 \end{pmatrix} = \begin{pmatrix} R \\ \omega D \\ \beta I \end{pmatrix} \begin{pmatrix} \theta_1 \\ \dots \\ \theta_n \end{pmatrix}$$
(1)

Where R,D and I are the response and identity matrices and β, ω are weighting factors

Sextupole knobs tuning :

pre-computed combinations of sextupole transverse displacements meant to **control a chosen set of linear beam aberrations** $(\beta_{x,y}^*, \alpha_{x,y}^*, \eta_{x,y}^*, \eta_{y}^{'*}, < x, y >, < x', y >, < x', y' >)$ Each knob is scanned by looking at the **optimum Luminosity** Knobs are not fully orthogonal \Rightarrow **Iterations needed**

⁵ 2nd Sextupole knobs tuning

F. Plassard CERN/ Uni. Paris Sud

August 22nd 2016 7/14

Tuning status of the FFS for short and long L^* lattices 0.00000

Tuning of the CLIC 380 GeV FFS : L*= 4.3 m vs L*=6 m

F. Plassard CERN/ Uni. Paris Sud

Tuning of the CLIC 380 GeV FFS : L*= 4.3 m vs L*=6 m

- For L* = 6 m (upper rigth plot), dispersion level has been increased by 70% leading to reduce the average sextupole strength of the FFS by 40%
- For $L^* = 4.3$ m, no increase of dispersion in the FFS \Rightarrow Sextupole strength unchanged

F. Plassard CERN/ Uni. Paris Sud

CERN-BINP / eCOL 2016

August 22nd 2016 10 / 14

Tuning of the CLIC 380 GeV FFS : $L^* = 4.3$ m (Dispersion impact)

- For $L^* = 4.3$ m, increasing dispersion in the FFS reduces the maximum luminosity achievable but increases the tuning efficiency
- More detailed studies of the tunability will decide the final layout of the FFS

Tuning of the CLIC 380 GeV FFS : $L^* = 6$ m (Dispersion impact)

- For $L^* = 6$ m, reducing dispersion in the FFS reduce the maximum luminosity achievable and reduce the tuning efficiency
- Tuning efficiency has a limit when increasing dispersion in the FFS (black line)

CLIC 380 GeV FFS : L^* = 6 m & L^* = 4.3 m (Dispersion impact)

FFS SEXTUPOLE STRENGTHS HAVE A LARGE IMPACT ON THE TUNING EFFICIENCY

F. Plassard CERN/ Uni. Paris Sud

CERN-BINP / eCOL 2016

Summary

Tuning of the CLIC 380 GeV FFS

Strong impact of the sextupole strengths in the FFS on the tuning efficiency

- Tuning performance of the lattice with L^* = 4.3 m has been improved by increasing dispersion in the FFS
- Both designs (nominal and long L^*) shows now good tuning performance
- More imperfections will be added in further tuning simulation : roll, tilt and strength errors