

Luminosity measurement with the CMD-3 detector at the VEPP-2000 e+e- collider

Artem Ryzhenenkov

CMD-3 Collaboration BINP, Novosibirsk

VEPP-2000 and CMD-3

Luminosity

Percise luminosity measurement is a key part for many experiments which study the hardrinic cross sections on e+e-colliders.

One of the physical aim of VEPP-2000 Collider is the measurement of total cross section $e+e- \rightarrow$ hardrons.

Integrated luminosity is deternined by using of two QED processes:

$$e^+e^-
ightarrow e^+e^-$$

 $\int L dt = \frac{N}{\sigma_{vis} \varepsilon}$
 $e^+e^-
ightarrow \gamma \gamma$

N — number of registered events

 σ — visible cross section

 ε — efficiency of registration, selection and event reconstruction

Events selection

e+e- → **e+e**-

- 2 collinear tracks
- total charge = 0
- $|| \phi_1 \phi_0| \pi | < 0.15$ rad
- $|\theta_1 + \theta_0 \pi| < 0.25$ rad
- π -1.0rad > (θ_0 +(π θ_1))/2 > 1.0 rad
- $E_{\text{beam}}/2 < P_2, P_1$
- $E_{beam}/2 < E_2, E_1 < 3*E_{beam}/2$

Events selection

$e^+e^- \rightarrow \gamma\gamma$

- No central tracks in the chamber
- 2 collinear clusters in Ecal
- $|| \phi_1 \phi_0| \pi | < 0.2 \text{ rad}$
- $|\theta_1 + \theta_0 \pi| < 0.6$ rad
- π -1.0 rad > (θ_0 +(π - θ_1))/2 > 1.0 rad

$$- E_{beam}/2 < E_2, E_1 < 3*E_{beam}/2$$

Efficiency of detection, reconstruction and selection of events

$$\begin{array}{l} \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{e}^{+}\mathbf{e}^{-} : \quad \varepsilon = \varepsilon_{DC} \ \varepsilon_{Tr.} \ (\mathbf{1} + \delta_{pipe}) \ (\mathbf{1} + \delta_{e}) (\mathbf{1} + \delta_{z}) \\ \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{\gamma}\mathbf{\gamma} : \quad \varepsilon = \varepsilon_{Lxe} \ \varepsilon_{N.Tr.} \ (\mathbf{1} + \delta_{pipe}) \ (\mathbf{1} + \delta_{e}) \end{array}$$

- 1) \mathcal{E}_{DC} Two tracks reconstruction efficiency in drift chamber(DC) (~99.9%)
- 2) $\mathcal{E}_{Lxe^{-}}$ Cluster reconstruction efficiency in calorimeter (~99.5%)
- 3) *E_{Tr.}* Trigger efficiency (~99.8%)
- 4) *E*_{*N.Tr.*} Nutral trigger efficiency (~99%)
- 5) δ_{pipe} Correction related to event loss in the wall of the vacuum chamber(~1.2%)
- 6) δ_{Θ} Correction related to the DC angular resolution (~0.2%)
- 7) δ_z -Correction related to the DC z-coordinate calibration (~0.5%)

DC Z-coordinate scale

DC theta systematic

Luminosity measurement precision is mainly determined by polar angle systematic.

Ratio of luminosity measured at different polar angles(**0.95**, **1.0**, **1.1** μ **1.2 rad**) is plotted for theta systematic estimation.

Systematic errors

Source \ run	2011	2012	2013
Rad. corrections	0,2%	0,2%	0,2%
Separation errors	0,2%	0,2%	0,2%
Beam energy	0,8%	0,27%	<0,05%
Vacuum champer	0,2%	0,2%	0,2%
Trg. Efficiency and track reconstruction	<0,1%	<0,1%	<0,1%
Θ distribution	0,5%	0,5%	0,6%
<i>Total</i> (max.)	1 %	0,7%	0,7%

Luminosity ratio

1 - L₇₇ / Lee, %

500

600

700

800

0.1±0.2 %

Luminosity ratio calculated by using of e+e- and $\gamma\gamma$ is shown in the graphs.

 $-\frac{L\gamma\gamma}{Le+e-}$

Conclusion

- 1) Luminosity measurement technique is developed for two processes $e+e- \rightarrow e+e-$ and $\gamma\gamma$.
- 2) Procedure for monitoring DC calibration is developed (DC Z-scale).
- 3) Luminosity measurement accuracy at the moment is 1%.

Spare slides

VEPP 2000

 $L = 10^{31} \text{ cm}^{-2} \text{c}^{-1}$ at 1 GeV

Collected luminosity

Total collected luminosity for 2011-2013 is ~ 59 pb - 1

- **8.3 pb**⁻¹ ω -meson region
- **8.4 pb**⁻¹ ϕ -meson region

35 pb-1 — > 1.04 ГэВ

Current systematic error ~ 1.5 %

Eevents loss on the vacuum pipe

DC angular resolution

The systematic error due to the DC angular resolution:

$$\frac{\Delta\sigma}{\sigma} = A(\theta)\sigma_{\theta}^{2}$$

For $\sigma_{\theta} \sim 0.01$ rad, correction $\sim 0.1\%$

Two track reconstruction efficiency

e+e- test events are selected according to the following criteria:

- 1) $|\theta_{1 \text{ ixe}} + \theta_{0 \text{ ixe}} \pi| < 0.3 \text{ rad}$
- 2) $| |\phi_1 \phi_0 \pi | \phi_{rot} | < 0.03 \text{ rad}$
- 3) $E_{\text{beam}}/2 < E_2, E_1 < 3*E_{\text{beam}}/2$
- 4) π 1.0 rad > ($\theta_0 + (\pi \theta_1))/2$ > 1.0 rad

17

Beam energy measurement in run2011 and run2012

E c.m., MeV

Conclusion

- Разработана процедура измерения интегральной светимости по двум процессам e+e- → e+e- и γγ.
- 2) Разработана методика измерения энергии пучков в заходах 2011 и 2012 г.
- 3) Разработана процедура учета «плавного изменения» масштаба z-координаты ДК.
- 4) Систематическая ошибка измерения светимости на текущий момент составляет 0.7% (цель -0.3%).
- 5) Всего в заходах с детектором КМД-3 набрано 59 пб-1.

QED check

 $e^+e^- \rightarrow \mu^+\mu^-$

This method works at E_{beam} < 0.33 GeV