

23.08.2016

Measurement of $\Gamma_{ee} \cdot B_h (J/\psi)$ with KEDR detector at the VEPP-4M collider

Kharlamova Tatyana (BINP)

Outline:

- 1. VEPP-4M collider and KEDR detector
- 2. Motivation
- 3. Selection criteria
- 4. Fit procedure
- 5. Systematic uncertainties
- 6. Results and summary

VEPP-4M collider

Beam energy 1÷6 GeV Number of bunches 2 × 2

For E=1.5 GeV: Beam current 1.5 mA Luminosity 2x10³⁰ cm⁻²s⁻¹

• Resonant depolarization :

Instantaneous measurement accuracy $\simeq 1 \times 10^{-6}$ Energy interpolation accuracy (5 ÷ 15) × 10⁻⁶ (10 ÷ 30 keV)

• Infrared light Compton backscattering: Statistical accuracy $\simeq 5 \times 10^{-5}$ / 30 minutes Systematic uncertainty $\simeq 3 \times 10^{-5}$ (50 ÷ 70 keV)

KEDR detector

- 1. Vacuum chamber
- 2. Vertex detector
- 3. Drift chamber
- 4. Threshold aerogel counters
- 5. ToF counters
- 6. Liquid krypton calorimeter
- 7. Superconducting coil
- 8. Magnet yoke
- 9. Muon tubes
- 10. Csl calorimeter
- 11. Compensating s/c solenoid

Motivation

- Full and lepton J/ψ -meson widths are defined by fundamental properties of strong and electromagnetic c-quark interactions
- High precision in its experimental measurement is of importance for charmonium potential models, providing good opportunity to increase their prediction ability for more complicated quark states.
- In modern hadrons experiments, such as ALICE, ATLAS, CMS, LHCb:
 - tests of QCD models predictions,
 - methodological part of measuring efficiencies and detector calibration.

Precision test of J/ ψ from full lattice QCD

 f_v – vector meson decay constant

$$\langle 0|\overline{\psi}\gamma^{i}\psi|v\rangle = f_{v}m_{v}\epsilon^{i} \qquad \Gamma(v_{h}\to e^{+}e^{-}) = \frac{4\pi}{3}\alpha_{QED}^{2}e_{h}^{2}\frac{f_{v}^{2}}{m_{v}}$$

~ O

Selection criteria

- Primary trigger:
 - two or more non-collinear scintillation counters
 - veto from closest to the beam line CsI calorimeter crystals
- Secondary trigger:
 - at least two particles in the detector using information from drift chamber, calorimeter and scintillation

Hadrons selections:

- total energy deposition in the calorimeter $700 < E_{emc} < 2500$ MeV;
- $-\geq 1$ track coming from beam spot (p < 1.5 cm, $|z_0|$ < 13 cm, P_t > 100MeV);
- ≥ 1 photon (calorimeter cluster, not associated with any track) with minimum energy $E_{\gamma}/E_{run} > 0.05$;
- Fox-Wolfram moments $\dot{H}_2/H_0 < 0.9$;
- number of vertex detector hits < 55

Data and MC comparisons

Data and MC comparisons

Luminosity determination

Process $e^+e^- \rightarrow e^+e^-$

Leptons event selection:

- two clusters within theta range 41 < θ <139° and energy E > 450 MeV each;
- total energy of those two clusters > 2 GeV;
- energy deposition not from those two clusters < 20% of beams energy;
- θ and ϕ acolinearity are less than 7° and 10° respectively;
- event sphericity calculated with charged particles S_{ch} < 0.05;
- \leq 3 additional clusters with energy > 40 MeV;
- ≤ 2 additional clusters with energy > 80 MeV

Data and MC comparisons for e⁺e⁻ events

Fit procedure

- $\Gamma_{ee} \cdot B_h (J/\psi)$ is extracted from combined fit of hadrons and e^+e^- production in the energy range of J/ψ resonance
- The numbers of hadrons (N_i) and e⁺e⁻ (n_i) events observed at each energy point were fitted simultaneously as a function of collision energy with minimizing χ² functions:

$$\chi^2 = \sum_i \frac{(N_i^{data} - N_i^{teor})^2}{N_i^{data}} + \frac{(n_i^{data} - n_i^{teor})^2}{n_i^{data}}$$

- Luminosity at each energy point is defined from likelihood function as well.
- Fit parameters: $\Gamma_{ee} \cdot B_h (J/\psi)$ value, mass shift, beam energy spread, and backgrounds contribution

Fit results

 $L = 0.23 \text{ pb}^{-1}, \sigma_W = 0.697 \pm 0.014 \text{ MeV}, ~250 \text{K J/}\psi \text{ mesons}$

12

Systematic uncertainties

Source:	Syst.error, %
Detector response	1.5
-ABG thresholds, VD crosstalk, description of nuclear interaction, selection criteria	
Luminosity determination	1.3
- Uncertainties of absolute luminosity determination	
Simulation of J/ψ decay	1.0
-J/ ψ \rightarrow hadrons generator tuning, track reconstruction efficiency	
Energy determination - energy determination at each point (<25 keV)	0.5
Other - Accuracy of resonance term calculation, interference parameter	0.3
Total	2.3

 $\Gamma_{ee} \cdot B_h (J/\psi) = 4.866 \pm 0.044 (stat) \pm 0.112 (syst) keV$ Grey band corresponds to PDG value

Summary

- New precise measurement of $\Gamma_{ee}B_h(J/\psi)$ and $\Gamma_{ee}(J/\psi)$ with the KEDR detector at the VEPP-4M e^+e^- collider was performed
- Experimental methods and techniques applied during this analysis can be then directly used within data treatment from super-charm-tau factory

Back ups

Fit procedure - 2

• Theoretical numbers of hadrons and e⁺e⁻ events are defined as follows:

• Observed multihadron cross sections is parameterized with:

$$\sigma_{J/\psi}^{obs}(W) = \varepsilon_{J/\psi} \cdot \int \sigma_{J/\psi}^{RC}(W')\rho(W,W') \mathrm{d}W' + \sigma_{cont}$$

Narrow resonance form

Cross section for the process $e^+e^- \rightarrow J/\psi \rightarrow hadrons$ with $s=W^2$

$$\sigma_{J/\psi}^{RC}(s) = \int \frac{12\pi\Gamma_{ee}\Gamma_h}{(s(1-x)-M^2)^2 + \Gamma^2 M^2} \mathcal{F}(x,s) dx$$

 $\Gamma, \Gamma_{ee}, \Gamma_{h}$ – full, lepton and hadron resonance width *M*- resonance mass F(x,s) – taking into accoun radiation corrections E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 41 (1985) 466

Interference and calculation with accuracy~1% Y.I. Azimov, et al., JETP Lett. 21 (1975) 172 Increasing accuracy

K.Yu. Todyshev. arXiv.org:0902.4100

Systematic uncertainties - details

Simulation

Source	%
$J/\psi \rightarrow hadrons$ generator tuning	0.8
Selection of MC samples for tuning	0.3
MC statistics	0.3
Efficiency of track reconstruction	0.1
Reweighting	0.3(0.2)
Sum in quadrature	1.2

Luminosity	
Source	%
Calorimeter response calibration	0.2
Calorimeter alignment in respect to DC	0.2
Determination of J/ψ contrubution (θ angle)	0.3
Cross section calculation	0.4
MC statistics	0.15
Cuts variation	1.0
Sum in quadrature	1.3

Detector	
Source	%
Calorimeter response	0.6
Nuclear interaction	0.2
Tracking P_t/θ resolutions	0.7
Trigger efficiency (ToF)	0.3
VD crosstalk	0.8
Cuts variation	0.8
Sum in quadrature	1.5

Source Collider	%
Collider background	0.2
Energy collision asymmetry	0.2
Energy interpolation	0.3
Sum in quadrature	0.5

Other

Source	%
accuracy of the resonance term	0.1
accuracy of radiative correction calculations	0.1
interference parameter λ	0.3
Sum in quadrature	0.5