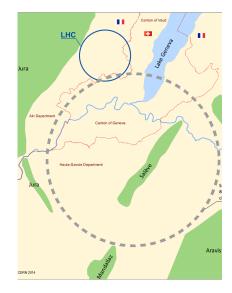
FCC software strategies and challenges

23.08.2016 CERN-BINP workshop **Valentin Volkl** – University Innsbruck / EP-SFT - CERN

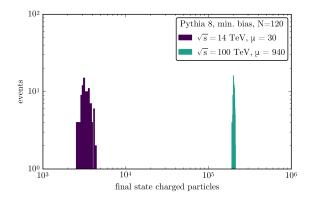


- Motivation
 - Pileup at FCC-hh / Beam Background at FCC-ee
- Common Software Framework for FCC-ee / FCC-hh
- Software performance and pileup merging strategies
- Summary

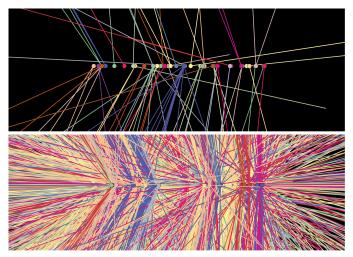
The Future Circular Collider

- Goal: Conceptual Design Report for the next European Strategy Update (2019)
 - pp-collider (FCC-hh)
 - 16 T -> 100 TeV pp in 100 km
 - 80-100 km tunnel infrastructure in Geneva area
 - e⁺e⁻ collider (FCC-ee) as a potential first step
 - pe (FCC-he) option

Detector R&D

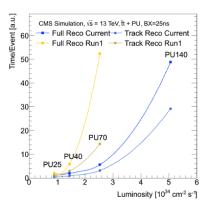

- Challenge: provide credible detector design for conceptual design report
 - Possibly many changes and iterations on design

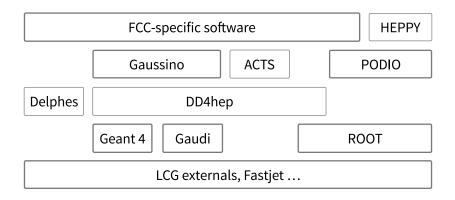
 Parametrised simulation and back-of the-envelope calculations where possible, but full simulation studies needed in the end


Pileup at FCC-hh

- Up to 1020 additional interaction per bunch crossing
- Option with shorter bunch spacing (25 \rightarrow 5 ns)
- LHC-like conditions vs. FCC-like conditions

Pileup at FCC-hh

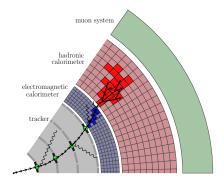

- Charged tracks and vertices
 - LHC-like conditions ($\mu = 25$) vs. FCC-like conditions ($\mu = 1020$)



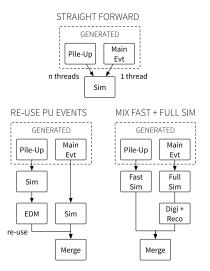
Software performance

- Pileup already a problem for LHC experiments
- Simulation time effectively linear
- Reconstruction will consume larger part of resources as pileup grows

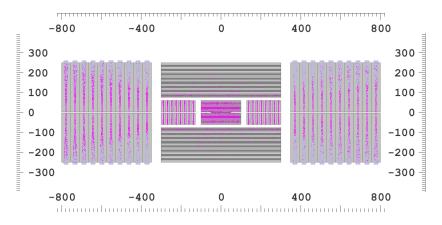
Current CMS software performance plot



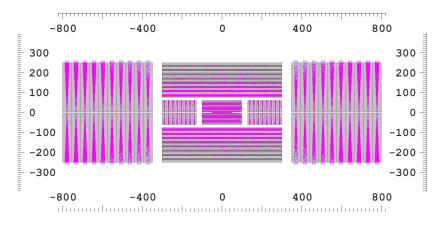
- Emphasis on re-use of generic HEP software
- Single entry point for FCCSW docs:
 - http://fccsw.web.cern.ch/fccsw/


Software Details

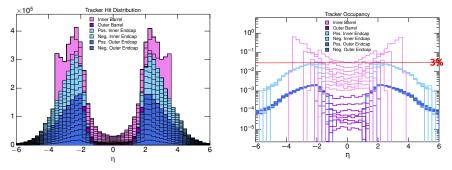
- Detector Description: DD4hep
 - Toolkit for full detector description
 - used currently only for the pure geometry description
- Geant4 toolkit used for full and parametrised simulation
 - fast simulation fully integrated
 - mixing full and fast simulation possible
 - for different volumes
 - for different particles


Pileup merging strategies

- Full simulation of pileup extremely expensive
- Timing structure of events needed for out-of time pileup

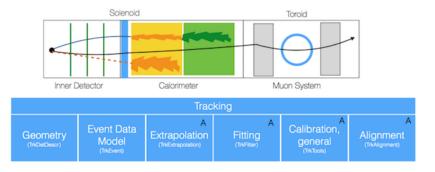

Simulation Results: peak pileup vs. no pileup

- ▶ full sim study of *preliminary* tracker layout and parameters
- event display, Z-Rho projection [mm]


Simulation Results: peak pileup vs. no pileup

- full sim study of *preliminary* tracker layout and parameters
- event display, Z-Rho projection [mm]

Simulation Results: More quantitatively


- ▶ full sim study of *preliminary* tracker layout and parameters
- assume 50 microns pixel width (compare CLIC)

- occupancy in inner layer orders of magnitude too high
- pileup mitigation techniques needed

ACTS

- A Common Tracking Software: ATLAS tracking code
- Decoupled from Athena (ATLAS software framework), standalone library
- First alpha release in June, recently prototype of last missing feature (Kalman-Fitter) finished

- centered on the concept of using Plain Old Data in the data-model
 - simple, C-like structures
- one of the many components in the FCC software stack aiming at more general usability in HEP (see *presentation*)
- ROOT as I/O backend
- generates relevant code from a plain-text description of the data-model

PODIO - Code Generation

Code Generation

- data model described in .yaml file
- separate repository for FCC event data model
- low level details and memory management completely handles by PODIO
- user interaction only with high level objects

Example definition in yaml:

ExampleCluster : Description : "Cluster" Members: - double energy // cluster energy OneToManyRelations: // hits contained in the cluster - ExampleHit Hits // sub clusters used to create this cluster - ExampleCluster Clusters

- The FCC Design Study plans for a post-LHC Circular Collider
- Formidable computing/physics challenges
 - support detector design studies
 - extreme pileup in phase 2
- Detector background is a serious computing issue
- Common Software to support FCC-hh, -ee, and -eh
 - synergies with current experiments
 - borrow and use generic HEP-software (ACTS ...)
 - PODIO developed by FCC

Thank you!

	FCC Phase 1	FCC Phase 2
bunch spacing [ns] Peak luminosity [cm ⁻² s ⁻¹] Total luminosity [ab ⁻¹] Peak pileup Peak pileup line density m ⁻¹	25 $5 \cdot 10^{-34}$ 2.5 (10 years) 170 ≤ 3200	$\begin{array}{l} \text{25 (5)} \\ \text{30} \cdot 10^{-34} \\ \text{15 (15 years)} \\ \text{1020 (204)} \\ \leq 17000 \end{array}$
rms bunch length [cm] 	8	8

doi:10.1103/PhysRevSTAB.18.101002