Time-Resolved Scattering from Solutions (Liquidography),

Hyotcherl (Harry) lhee Dept. Chemistry, KAIST

3rd European XFEL Meeting Hamburg, Germeny 2009-1-28

Solution-phase reactions

- Most reactions related with Chemistry & Biology occur in solution phase.
- Time-resolved solution scattering (diffraction) to probe reaction dynamics

X-ray Pulse Parameters

	3 rd Gen. Synchrotr on	XFEL
Temporal pulse width	h:♪ ~100 ps♪	< ~0.1 ps♪
Intensity	/: ♪ <10 ⁹ ph/pulse♪	>10¹² ph/pulse♪
Repetition Rate	e:♪ ~1000 Hz♪	~100-5000 Hz♪
■ Bandwidth (ΔE/E	:):♪ ~3%♪	~0.1%♪

Outline

Background & Introduction

- Optical Spectroscopy vs Scattering (Diffraction)
- Crystal Diffraction vs Liquid Scattering

Data Analysis

Application Examples (Small Molecules)

- Optical Spectroscopy vs Scattering (Diffraction)
- Fingerprinting the reaction intermediates, Structural Sensitivity
- Gas phase vs Solution phase
- Pushing the time resolution

TR Protein Solution Scattering

- Quaternary and Tertiary structural transition of Hemoglobin, Myoglobin
- Protein folding dynamics of cytochrome-c.
- Photocycle of photoactive yellow protein (PYP)

Optical Spectroscopy versus Diffraction

Optical Spectroscopy

- Optical Resonances
- Change in populations of energy states
 - Signal does not have direct relationship with molecular structure

• Signals are not easily predictable by a simple equation, and often not accurate enough

Diffraction

- Elastic Scattering
- Change in molecular structures
- Signal is directly related with molecular structure
- Scattering patterns are easily and accurately predictable from a structure model by a scattering equation

- Sensitive only to specific energy state or species
 - Signals from different species can be well resolved in the wavelength space

→ high sensitivity

Diffraction

- Sensitive to all species and energy states
- Signals from different species are mixed in all diffraction angles

Iow sensitivity

Optical Spectroscopy

- Sensitive only to specific energy state or species
- Can be sensitive to only specific location in the potential energy space
- Scale is not maintained

→ high sensitivity but, may not be global

Diffraction

- Sensitive to all species and energy states
 - Sensitive to major channel
- Scale is maintained (Branching ratio)
 - → low sensitivity but, **global**

Crystal Diffraction vs Liquid Scattering

Single Crystal

• Laue Conditions: Only hkl $\rho(xyz) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{r} \overline{F(hkl)} \exp(-2\pi i(hx + ky + lz))$ $= \frac{1}{V} \sum_{h} \sum_{k} \sum_{r} |\overline{F(hkl)}| \exp(i\alpha(hkl)) \exp(-2\pi i(hx + ky + lz))$

Isotropic Averaging:
 All q range is important

■ Huge background

$$4\pi r^2 \rho_0[g(r)-1] = \frac{2r}{\pi} \int_0^\infty q(\frac{I(q)-I_{atom}(q)}{f^2(q)}) \sin qr dq \qquad q = \frac{4\pi}{\lambda} \sin \theta$$

Scattering from Solutions

Net Signal (Difference) is even smaller

Scattering from Solutions

Time-Resolved X-ray Liquidography: Results

Data Analysis (Global Fitting Analysis)

Time-Resolved X-ray Liquidography: Results

Time-Resolved X-ray Liquidography: Analysis

Molecule Gallery

Water (H₂O)≯

Cyclohexane (C₆H₁₂)♪

Tetralchloro Methane(CCl₄) ♪ Acetonitrile (CH₃CN)♪

Methanol (CH₃OH)≯

Outline

Background & Introduction

- Optical Spectroscopy vs Scattering (Diffraction)
- Crystal Diffraction vs Liquid Scattering

Data Analysis

Application Examples (Small Molecules)

- Optical Spectroscopy vs Scattering (Diffraction)
- Fingerprinting the reaction intermediates, Structural Sensitivity
- Gas phase vs Solution phase
- Pushing the time resolution

TR Protein Solution Scattering

- Quaternary and Tertiary structural transition of Hemoglobin, Myoglobin
- Protein folding dynamics of cytochrome-c.
- Photocycle of photoactive yellow protein (PYP)

Photochemistry of CHI₃ (lodoform) in methanol

E.A. Glascoe et al, *Organomet*. **25**, 775 (2006)

Ru₃(CO)₁₀(μ -CO) Intermediate 2

8

Determination of the Photoproduct

Photochemical Reaction Pathway

Outline

Background & Introduction

- Optical Spectroscopy vs Scattering (Diffraction)
- Crystal Diffraction vs Liquid Scattering

Data Analysis

Application Examples (Small Molecules)

- Optical Spectroscopy vs Scattering (Diffraction)
- Fingerprinting the reaction intermediates, Structural Sensitivity
- Gas phase vs Solution phase
- Pushing the time resolution

TR Protein Solution Scattering

- Quaternary and Tertiary structural transition of Hemoglobin, Myoglobin
- Protein folding dynamics of cytochrome-c.
- Photocycle of photoactive yellow protein (PYP)

Structure Refinement

Angew Chemie Int Ed, 47, 5550-5553 (2008)

Ru₃(CO)₁₀ 2CO loss Intermediate 3A, ¹A

Outline

Background & Introduction

- Optical Spectroscopy vs Scattering (Diffraction)
- Crystal Diffraction vs Liquid Scattering

Data Analysis

Application Examples (Small Molecules)

- Optical Spectroscopy vs Scattering (Diffraction)
- Fingerprinting the reaction intermediates, Structural Sensitivity.
- Gas phase vs Solution phase
- Pushing the time resolution.

TR Protein Solution Scattering

- Quaternary and Tertiary structural transition of Hemoglobin, Myoglobin
- Protein folding dynamics of cytochrome-c.
- Photocycle of photoactive yellow protein (PYP)

Dynamics of $C_2F_4I_2$ in solution

•Contrast with $C_2H_4I_2$

•Comparison with $C_2F_4I_2$ in gas phase (Ult rafast electron diffraction):

Gas Phase♪

for $C_2F_4I \rightarrow C_2F_4 + I$

Ultrafast electron diffrac tion

Time Scale: ~23 ps

Fraction: 55%

Solution Phase

for $C_2F_4I \rightarrow C_2F_4 + I$

Time-Resolved X-ray S olution Scattering

Time Scale: ~300 ps

Fraction: 20%

Structural Dynamics of Hgl₂

In the gas phase, both HgI+I and Hg + 2I are observed.

PNAS, 103, 9410-9415 (2006)♪

Gas Phase

Photolysis of Hgl₂ at 267 nm

Femtosecond Mass spe ctrometry

Solution Phase♪

Photolysis of Hgl₂ at 267 nm

Time-Resolved X-ray S olution Scattering

Reaction in the solvent & Non-geminate recombination

Outline

Background & Introduction

- Optical Spectroscopy vs Scattering (Diffraction)
- Crystal Diffraction vs Liquid Scattering

Data Analysis

Application Examples (Small Molecules)

- Optical Spectroscopy vs Scattering (Diffraction)
- Fingerprinting the reaction intermediates, Structural Sensitivity
- Gas phase vs Solution phase
- Pushing the time resolution

TR Protein Solution Scattering

- Quaternary and Tertiary structural transition of Hemoglobin, Myoglobin
- Protein folding dynamics of cytochrome-c
- Photocycle of photoactive yellow protein (PYP)

Protein Gallery

Hemoglobin (Hb)

Myoglobin (Mb)

Dimeric Hemoglobin (Hbl

Photoactive Yellow Protein (PYP)

Cytochrome C (CytC)

Bacteriorhodopsin (bR

Hemoglobin (Hb) is a tetrameric liand-binding heme

Oxy and Deoxy states have a different qu aternary conformation.

Displacement of Fe from plane of heme (~ 0.5 Å) triggers change of quaternary co nformation: ab *dimers rotate* ~ 15° and tra *nslate* ~ 0.8 Å

From Balakrishnan et al. J Mol Biol (2004) 340

Plausibility of TR-WAXS

TR-WAXS of Hemolgobin

Nature Methods, 5, 881-887 (2008) (COVER in the October issue)

Nature Methods, (2008), in press (COVER in the October issue)

Previous Optical Spectroscopy

Table 1. Time constants, τ , of successive exponential phases fit to Soret absorption changes upon HbCO

photolysis	Transient Absorption Spectroscopy								
Study		$\substack{\tau_{1'}\\(ns)}$	τ_1 (ns)	$ au_2 \ (\mu s)$	$ au_3$ (μs)	$ au_4$ (µs)	τ_5 (ms)		
Balakrishnan et Goldbeck <i>et i</i> Hofrichter <i>et</i>	al. 11. ⁴⁵ al. ⁴⁸	22	85 109 40	1.3 2.1 0.83	53 44 20	276 183 190	1.5 3.9 3.8		

b

Nature Methods, 5, 881-887 (2008)

Summary

- TR X-ray Solution Scattering Resolves Structural Dynamics: Mo lecular structures of short-lived intermediates and the rebindi ng kinetics of such intermediates can be visualized by Time-Re solved X-ray Diffraction in Solution for various small molecules and proteins.
- TR X-ray Solution Scattering: A versatile tool to investigate sol ution-phase reaction dynamics, complementary to spectrosco py.

"Visualizing Solution-Phase Reaction Dynamics with Time-Resolved X-ray Liquidography", Hyotcherl Ihee, *Acc. Chem. Res.* Publication Date (Web): Dec ember 31 (2008).♪

Acknowledgement

Collaborators (Experiment) Michael Wulff (ESRF) Marco Cammarata (ESRF) Qingyu Kong (SOLEIL) Anton Plech (U Konstanz) Philip Anfinrud (NIH) Friedrich Schotte (NIH) Antonio Cupane (U Palermo) Matteo Levantino (U Palermo) Friederike Ewald (ESRF) Maciej Lorenc (U Rennes) Michel Koch (EMBL) **Emanuele Pontecorvo** Manuela Lo Russo (ESRF) T. Narayanan (ESRF) Shin-ichi Adachi (KEK) Shin-ya Koshihara (TIT) **Jasper Van Thor (Imperial) Collaborators (Theory)** Savo Bratos (UPMC) **Rudolphe Vuilleumier (UPMC)** Fabien Mirloup (UPMC)

Korean Members Jae Hyuk Lee (KAIST) Tae Kyu Kim (PNU) Kyung Hwan Kim (KAIST) Yang Ouk Jung (KAIST) Sena Ahn (KAIST) Jungkweon Choi (KAIST) Joonghan Kim (KAIST) Jangbae Kim (KAIST) Youngmin Kim (KAIST) Srinivasan Muniyappan (KAIST) Cheol Hee Yang (KAIST) Sunhong Jun (KAIST) G. Prabhakar Sehyung Eum (KAIST) Youhong Lee (KAIST)

Financial Support National Creative Research Initiatives (Center for Time-Resolved Diffraction) of MEST/KOSEF

Thank you