

Status of Undulator Systems January 2009

Joachim Pflüger XFEL / DESY

R& D Activities

- Pre-Series Prototype Mechanics
- Phase Shifter
- Magnetic Measurements, XFEL Measurement Room
- Tunnel Temperature Stabilization
- In Kind Contributions to WP71
- Time Schedule

R & D Actitivities

XFEL 5m Pre-Series Prototype Design

Reviewed Design 2008 for Pre-Series Prototypes

Motto simpler, better, cheaper

Includes:

- Relaxed Tolerances: Girder Material AIMg Y. Li, B. Faatz, J. Pflueger, Phys. Rev. ST-AB 1,100701 (2008)
- Simplified Girder Guiding → cheaper AND better
- Low Friction spherical Support Unit of Girder
- Smaller and cheaper Spindles
- Direct Measurement of Gap

European

Old: Girder Guiding using separate Guide Rail

Strict separation between:

- Load support (Load ↔ deformation)
- Force free girder guiding (precision)

New: Girder guiding by Support

Problem: The old intermediate girder deforms und magnetic forces. Girders deflect by 500µrad each

Solution:

- Girders have a rotational degree of freedom of low friction
- Alignment through the support guide way, adjustable via screws
- Girder Tilt $\approx \le \pm 100 \ \mu rad \rightarrow more \ accurate \ and \ cheaper$

XFEL Direct Measurement of Gap

Required Accuracy $\pm 1\mu m$ Problem: Forces of Measurement Best Result at present: $\pm 1\mu m$

Prototyping Experience (Dec 08)

Phase Shifter

XFEL User's Meeting, Jan 28, 2009 J. Pflüger, XFEL

XFEL Phase Shifter: General

XFEL User's Meeting, Jan 28, 2009 J. Pflüger, XFEL

XFEL Phase Shifter: Final Results

Huihua Lu, Jian Zhuang, Motuo Wang, IHEP

J. Pflüger

New Magnetic Lab, Magnetic Measurements

XFEL Magnetic Measurements, New Magnetic Lab

Progress in 2008

- Magnetic Measurements
 - Pole Height and Tilt Tuning is working fine, routinely used
 - Magnet Measurement Techniques needed for XFEL is available
- New Magnetic Lab
 - Lab operational
 - Temperature Specs fulfilled
 - Control Software working
 - In Use for PETRA III Devices

Pole Height Adjustment using µm Dial Gauges

Double Bridge in Use

Measurement Bridge

Pole Height Measurement Attachment of Measurement Bridge

Reading Accuracy: ±1µm Requirement:

±5µm

Direct view Simple, easy to use preferred Method

XFEL Field Measurements Results New Lab

U. Englisch

XFEL User's Meeting, Jan 28, 2009 J. Pflüger, XFEL

European

FEL XFEL Magnetic Lab with 0.1°C Stability

(C. Schulz)

Local Temperature Stability

Tunnel Temperature Stabilization

XFEL Tunnel Temperature Stabilization

- Reduced Tolerances on Air Conditioning
 Y. Li, B. Faatz, J. Pflueger, Phys. Rev. ST-AB 1,100701 (2008)
 - Requirement of ± 0.1°C Variation over whole Systems is relaxed to ± 0.1-0.2°C over ONE undulator Cell
 - Temperature Deviation is compensated with Gap Adjustment
- Old concept was very expensive
- Study of alternative Concepts, using longitudinal Air Flow (C. Schulz)
- Heat Transport properties in the Tunnels are important:
 - Marl, Glacial Till no water convection: Good Insulator
 - Sand and Gravel with Water Convection: Poor Insulator
- Measurements in the HERA to get Information

XFEL Objectives of HERA Measurements

- HERA Tunnel as an example of the XFEL tunnels
 - Temperature ≈20°C, Tunnel is still maintained (Heated)
 - Ground Water: Ost-Rechts Sand: Süd-Rechts
- Thermal Situation the HERA Tunnel
 - Equilibrium Soil Temperatures 5m around Tunnel with / without Ground Water
 - Thermal Response to Changes in Heat Load shut off
- Impact on Design of XFEL Air Conditioning System
 - Cooling and/or Heating required? How much?
 - Dehumidifiers needed?
 - Design of Air Conditioning System
 - Impact on Cost

Temperature Stability

Li, Faatz, Pflueger

- ρ requires temperature stability < 0.1°C
- Constant Gradient, i.e. K changes linearly over system length

EL First HERA Results (C. Schulz & Uni Stuttgart)

Soil Temperature 0-3.5m Outside the HERA Tunnel Start 2.12.08 Tunnel Temperature: 22-23°C

Radial Distance [m]

- $Q = \frac{\lambda}{d} A \Delta T$
- **Q** : Heat Flux
- λ: Heat Conductivity 2.3 W/mK for Concrete
- d: Thickness of Concrete 0.3m
- A: Area = $16.7 \text{ m}^2 \text{ per m Tunnel}$
- ΔT : Temperature Difference

	ΔT [K]	Q [W/m]						
Süd-Rechts	0.5	64						
Ost Rechts	3.0	380						

XFEL Time Line of HERA Measurements

- Measurements until End of Feb 09
- Data Evaluation until End of April
- Definition of the Air Conditioning Concept until Nov 09
- Detailed Design Aug 2011

In Kind Contributions

XFEL CIEMAT Madrid

Design and Production of Components for 92 Intersections: Phase Shifters, Quadrupole Movers, Support Bases

Option:

System Resonsibility for Complete Intersection Sub-Assemblies

Status: Approved by Spanish Side Waiting for XFEL GmbH

XFEL CELLS Barcelona

Production Management of the SASE3 Standard Undulator Segments

Production of 21 XFEL Standard Mechanics and SASE3 Magnet Structures:

Tendering, Project Management, Quality Management.....

 Magnetic Tests and Tuning @XFEL, Commissioning

Status: Approved by Spanish Side Waiting for XFEL GmbH

XFEL Standard Segment

XFEL Manne Siegbahn Lab, Stockholm

Development and Implementation of a Precision Method to measure Qudrupole Properties in the Undulator Intersections

Approved by Swedish Side Waiting for XFEL GmbH

Test Setup with FLASH TQG July 08

Time Schedule

XFEL Time Schedule

Taal-Nawa	2007			2008			2009		2010			2011		2012		2	013		2	2014
	Q1 Q2	2 Q3	Q4	Q1 C	02 Q3	Q4	Q1 Q2	Q3 Q4	Q1 Q	2 Q3	Q4	Q1 Q2	Q3 Q4	Q1 (Q2 Q3 0	Q4 C	21 Q2	2 Q3	Q4 C	<u>21 C</u>
In coming Milectores							1							-						
In-coming milestones		05	06				1													
XFEL Project Start of WP-/1		100.	00				i								_					
SASE Tunnels Ready		_					3							05.0	1					
10 Tunnel Air conditioning				-))													
Concept Finding							į													
Construction		\bot					1	-												
11 Prototyping Planar Devices			_	L			1							Pla	nar	Pr	oto	otyp)es	5
12 SASE3 Prototyping				—			1													
13 Prototyping Intersection		Ŧ	_							-			-				_			
Start of CIEMAT Collaboration						🍫 20	10						In	ters	secti	or	IS I	Pro	to	
Quadrupole Movers					—		; ; ;			1										
Quad Movers Ready							1	\$ 1	6.10											
Support Basis						-														
Support Basis Ready							♦ 2	0.04												
Intersection ready for Production							i i			🔶 1	2.07									
14 Control System							1			-	-									
Global Control System							1			_			-							
20 Hall 5 / Bldg 36		*					1			-	-						Pro	odu	ctic	on
30 Production of Intersection							1			-				-		-				
31 Production of SASE1							1			l	¢ i					_			-	
32 Production of SASE2							1 1 1			l									-	
33 Production SASE3)													
33 FIGUUCION SASES							1						•							