

PROMPT PHOTONS IN DIFFRACTIVE PHOTOPRODUCTION (status report)

Peter Bussey, Ian Skillicorn, David Saxon, <u>Iurii Shyrma</u>

University of Glasgow Kyiv Institute for Nuclear Research

02.02.2016

Goals

- Apply the reweighting procedure for direct Rapgap MC using Z_{IP} variable.
- Evaluate for HERA2 the differential cross sections of diffractive photoproduction as functions of:
 - ✓ photon transverse energy
 - ✓ photon pseudorapidity
 - ✓ jet transverse energy
 - ✓ jet pseudorapidity
 - \checkmark M_X, X_y, X_{IP}, Z_{IP}, $\delta\eta$, $\delta\varphi$

Objectives and procedures

Our physics objective is to select diffractively produced prompt photons in photoproduction. These events can be explained if the scattered proton escapes through the beam pipe while emitting a colorless object (pomeron), which scatters with the electron. Therefore such events are characterized by low momentum transfer from proton to the pomeron and a large rapidity gap between the hadrons systems Mx and the proton. In other words we are trying to identify a subset of prompt photon events with low Xp and η_{max} .

Our *general method* to distinguish the signal from hadronic background is based on MC fit of the dZ distribution (dZ - *energy weighted mean width of the electromagnetic cluster in Z direction*). This fit allows us statistically separate prompt photon left peak (signal) from π^0 decay right peak (background).

$$dZ = \frac{\sum_{i} E_{i} |Z_{cluster} - Z_{i}|}{w_{cell} \sum_{i} E_{i}}$$

Data samples and event selection

Detector level selection

- **Data**: 9899e, 9900p, 0405e, 06e, 0607p (Mini Ntuples v08b), 91.18 pb⁻¹, 374 pb⁻¹
- ■*MC signal*: (Rapgap 3.202 v08b, diffractive php) direct + resolved

True level selection

■MC background: (Rapgap 3.202 v08b, Pythia 6.2 v08b giant dijet) direct+resolved

Event selection Event selection Hadronic jet selection 0.2 < y < 0.7Trigger HPP16 on 4 < Et jet < 35 GeV $Q^2 < 1 \text{ GeV}^2$ |Zvtx| < 40 cm $-1.5 < \eta \text{ jet} < 1.8$ |BCAL time| < 10 nsPrompt photon selection $Cal_pt < 10$ Fmck_prt[]=29 0.2 < Yjb < 0.7 $-0.7 < \eta < 0.9$ No SINISTRA electron with 5 < Et < 15 GeVprob > 0.9 and Yel < 0.7Eparticle / Ejet > 0.9Hadronic jet selection Prompt photon selection Diffractive event selection 4 < Et jet < 35 GeV Tufo[][0]=31 $-1.5 < \eta \text{ jet} < 1.8$ $-0.7 < \eta < 0.9$ η_{max} < 2.5 for Ezufo>0.4 GeV 5 < Et < 15 GeV Xp < 0.03Diffractive event selection Ezufo / Ejet > 0.9 $E_{FPC} < 1 \text{ GeV (in HERAI case)}$ $\eta_{\text{max}} < 2.5$ for Eparticle > 0.4 GeV Zufoeemc / Zufoecal > 0.9 Xp < 0.03track isolation in cone 0.2

HERAII, the comparison of Z_{IP} data signal distribution to MC Rapgap signal, γ +jet selection

 $\eta_{max} + X_P$ cuts data - fitted photons, MC is normalized to dataThe reweighting is applied only to direct Rapgap on hadron level

Reweighting formula:

$$w = \begin{cases} 7, & Z_{IP} > 0.9 \\ 1, & Z_{IP} \le 0.9 \end{cases}$$

Rapgap requires reweighting

HERAII, 2D-distribution of X_{γ} and Z_{IP} data variables, γ +jet selection η_{max} + X_P cuts

High Z_{IP} corresponds to high X_{γ}

HERAII, the comparison of η_{max} data signal distribution to MC Rapgap signal, γ +jet selection $\eta_{max}+X_P\ cuts$

data – fitted photons, MC is normalized to data

The reweighting is applied only to direct Rapgap on hadron level

 Z_{IP} reweighting gives a good description of η_{max}

On all following slides:

- Left plot Cross sections without normalization to HERAI.
- **Right plot** Cross sections normalized to HERAI total cross section. More precisely: cross sections are multiplied by factor HERAI_tot/HERAII_tot, where:

HERAI tot - HERAI total cross section HERAII tot - HERAII total cross section

Errors:

thick - statistical

thin - statistical + systematics + normalization error

The origins of systematics errors:

- 1) variation of the photon energy by $\pm 2\%$
- 2) variation of the jet energy by $\pm 2\%$
- 3) variation of the top and bottom limits in dZ fit: bottom 0.6, top 1.0 (central is 0.8)
- 4) variation of the direct/resolved signal fraction by $\pm 14\%$ (0.7 \pm 0.1)
- 5) possible presence of non-diffractive background –10%

MC Rapgap direct/resolved fraction is 70:30%

The total cross sections values (pb)

НЕ	RAI	НЕ	RAII	
γ+jet	inclusive	γ+jet inclusive		
1.026 ± 0.139	1.195 ± 0.143	1.197 ± 0.078	1.290 ± 0.079	

HERAII differential cross sections for photon E_t , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

	5 ÷ 6 GeV	6 ÷ 7 GeV	7 ÷ 8 GeV	8 ÷ 15 GeV
cr sec, pb	0.441±0.047	0.225±0.031	0.168±0.024	0.028±0.004
	0.515 ± 0.055	0.262 ± 0.037	0.196 ± 0.028	0.032±0.004
1/acceptance	1.234±0.026	1.177±0.032	1.036±0.038	1.103±0.030

HERAII differential cross sections for photon η , γ +jet selection

black - cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red — cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

	-0.7 ÷ -0.3	-0.3 ÷ -0.1	-0.1 ÷ 0.5	$0.5 \div 0.9$	
cr sec, pb 1.113±0.112		0.695±0.083	0.448±0.067	0.365±0.064	
	1.298±0.131	0.811±0.097	0.523±0.078	0.426±0.075	
1/acceptance	1.268±0.026	1.122±0.023	1.131±0.028	1.128±0.037	

HERAII differential cross sections for jet E_t , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red — cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

	4 ÷ 6 GeV	6 ÷ 8 GeV	8 ÷ 10 GeV	10 ÷ 15 GeV
cr sec, pb	0.161±0.018	0.218±0.023	0.096±0.014	0.013±0.003
	0.187 ± 0.021	0.254 ± 0.027	0.112±0.016	0.015 ± 0.003
1/acceptance	1.019±0.024	1.449±0.032	1.102±0.038	0.905±0.043

HERAII differential cross sections for jet η , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

	-1.5 ÷ -0.7	-0.7 ÷ 0.1	$0.1 \div 0.9$	0.9 ÷ 1.8	
cr sec, pb 0.335±0.044		0.487±0.050	0.352±0.042	0.083±0.020	
	0.390 ± 0.052	0.568±0.059	0.410 ± 0.049	0.097±0.023	
1/acceptance	1.338±0.030	1.217±0.022	1.049±0.026	0.917±0.039	

HERAII differential cross sections for photon M_x , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red — cross sections calculated by Peter Bussey

	10 ÷ 15 GeV	15 ÷ 20 GeV	20 ÷ 25 GeV	25 ÷ 30 GeV	30 ÷ 35 GeV	35 ÷ 40 GeV	40 ÷ 45 GeV
cr sec, pb	0.040±0.006	0.085±0.009	0.045±0.006	0.020±0.004	0.008±0.002	0.001±0.001	0.000±0.000
	0.046 ± 0.007	0.099±0.010	0.053±0.007	0.024 ± 0.005	0.009 ± 0.003	0.001 ± 0.001	0.000 ± 0.000
1/acceptance	1.517±0.040	1.234±0.025	1.014±0.026	0.921±0.039	0.845±0.060	0.830±0.118	0.452±0.194

HERAII differential cross sections for angle between photon and jet $\delta \phi$, γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

	0 ÷ 90	90 ÷ 130	130 ÷ 140	140 ÷ 150	150 ÷ 160	160 ÷ 170	170 ÷ 180
cr sec, pb	0.000 ± 0.000	0.000±0.000	0.000±0.001	0.002±0.001	0.006±0.001	0.013±0.002	0.073±0.006
	0.000 ± 0.000	0.000 ± 0.000	0.001±0.001	0.002±0.001	0.007 ± 0.002	0.015 ± 0.002	0.086 ± 0.007
1/acceptance	0.000±0.000	0.391±0.130	0.706±0.195	0.774±0.134	0.828±0.069	0.730±0.028	1.309±0.019

HERAII differential cross sections for angle between photon and jet $\delta \eta$, γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

	-2.9 ÷ -2.2	-2.2 ÷ -1.5	-1.5 ÷ -0.8	-0.8 ÷ -0.1	-0.1 ÷ 0.6	0.6 ÷ 1.3	1.3 ÷ 2	2 ÷ 2.7
cr sec, pb	0.000±0.001	0.026±0.016	0.169±0.033	0.351±0.046	0.521±0.054	0.264±0.042	0.102±0.026	0.013±0.012
	0.000 ± 0.002	0.030±0.019	0.197±0.038	0.409 ± 0.053	0.608 ± 0.064	0.308 ± 0.049	0.119 ± 0.030	0.015±0.014
1/acceptance	0.689±0.148	1.073±0.076	1.026±0.038	1.130±0.028	1.215±0.026	1.233±0.029	1.319±0.058	1.231±0.188

HERAII differential cross sections for X_{γ} , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red — cross sections calculated by Peter Bussey

	$0.1 \div 0.6$	$0.6 \div 0.7$	$0.7 \div 0.8$	$0.8 \div 0.9$	0.9 ÷ 1
cr sec, pb	0.184 ± 0.044	0.466±0.114	0.965±0.182	1.500±0.222	5.979±0.518
	0.214 ± 0.051	0.543±0.133	1.126±0.213	1.750±0.259	6.975±0.604
1/acceptance	0.910±0.036	0.666±0.049	0.810±0.049	0.830±0.029	1.521±0.024

HERAII differential cross sections for X_{IP} , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

	$0 \div 0.005$	$0.005 \div 0.01$	$0.01 \div 0.015$	$0.015 \div 0.02$	$0.02 \div 0.025$	$0.025 \div 0.03$
cr sec, pb	27.452±5.143	67.711±7.900	61.175±6.896	30.840±4.965	9.824±2.589	2.809±1.869
	32.025±5.999	78.990±9.216	71.365±8.045	35.978±5.793	11.461±3.020	3.277±2.181
1/acceptance	1.568±0.058	1.278±0.023	1.048±0.025	1.038±0.038	0.842 ± 0.050	0.804±0.083

HERAII differential cross sections for Z_{IP} , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

- Rapgap (70:30) prediction normalized to HERAII (left) / HERAI (right) total cross section standard Rapgap is normalized to cross section in 0-0.9 Z_{IP} range

	$0.0 \div 0.4$	$0.4 \div 0.5$	$0.5 \div 0.6$	$0.6 \div 0.7$	$0.7 \div 0.8$	$0.8 \div 0.9$	0.9 ÷ 1.0
cr sec, pb	0.210±0.051	0.492±0.161	0.752±0.196	1.461±0.233	1.059±0.195	0.964±0.169	4.937±0.510
	0.245±0.059	0.574±0.188	0.878±0.229	1.705±0.272	1.236±0.227	1.124±0.197	5.760±0.595
1/acceptance	1.164±0.065	1.096±0.061	1.111±0.052	1.046±0.043	0.967±0.036	0.739±0.029	1.607±0.037

HERAII differential cross sections for photon E_t , inclusive selection

black - cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

	5 ÷ 6 GeV	6 ÷ 7 GeV	7 ÷ 8 GeV	8 ÷ 15 GeV
cr sec, pb	0.560±0.051	0.248±0.034	0.186±0.026	0.031±0.004
	0.604 ± 0.055	0.267 ± 0.037	0.201±0.028	0.034 ± 0.005
1/acceptance	1.072±0.021	1.115±0.029	1.012±0.036	1.104±0.030

HERAII differential cross sections for photon η , inclusive selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

	-0.7 ÷ -0.3	-0.3 ÷ -0.1	-0.1 ÷ 0.5	$0.5 \div 0.9$
cr sec, pb	1.296±0.122	0.886±0.095	0.448±0.070	0.422±0.069
	1.399±0.131	0.956 ± 0.102	0.484 ± 0.075	0.455±0.074
1/acceptance	1.136±0.022	1.049±0.021	1.038±0.025	1.074±0.033

HERAII differential cross sections for photon M_x , inclusive selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

	10 ÷ 15 GeV	15 ÷ 20 GeV	20 ÷ 25 GeV	25 ÷ 30 GeV	30 ÷ 35 GeV	35 ÷ 40 GeV	40 ÷ 45 GeV
cr sec, pb	0.051±0.007	0.100±0.009	0.047±0.006	0.025±0.005	0.009±0.003	0.002±0.002	0.000±0.001
	0.055 ± 0.007	0.108±0.010	0.051 ± 0.007	0.027 ± 0.005	0.010 ± 0.003	0.002 ± 0.002	0.001 ± 0.001
1/acceptance	1.323±0.031	1.123±0.022	0.959±0.023	0.894±0.035	0.835±0.056	0.773±0.104	0.660±0.233

HERAII differential cross sections for X_{IP} , inclusive selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red – cross sections calculated by Peter Bussey

	$0 \div 0.005$	$0.005 \div 0.01$	$0.01 \div 0.015$	$0.015 \div 0.02$	$0.02 \div 0.025$	$0.025 \div 0.03$
cr sec, pb	33.609±5.754	84.868±8.677	62.979±7.301	37.962±5.708	12.558±3.064	3.314±1.988
	36.286±6.213	91.627±9.369	67.995±7.882	40.985±6.163	13.559±3.308	3.578±2.146
1/acceptance	1.303±0.039	1.150±0.020	0.994±0.024	0.987±0.034	0.842±0.047	0.773±0.073

Conclusions

- We have presented a final set of cross sections for diffractive photoproduction of prompt photons in the region defined by kinematic cuts and cuts on η_{max} and X_{IP} .
- Rapgap gives a good description of all variables with the exception of Z_{IP} and η_{max} .
- The Z_{IP} distribution shows a peak for $Z_{IP} > 0.9$ that is not predicted by Rapgap.
- The high Z_{IP} events are associated with high X_{γ} and low η_{max} .
- When the direct Rapgap is weighted by a factor 7 for $Z_{IP} > 0.9$, the weighted Rapgap describes all variables well.
- We have evidence for a hitherto unobserved direct process at high Z_{IP} that is not modeled in Rapgap with the H1 2006B version of the pomeron PDF.

Future plans

make final group presentation and paper

Backup

The dZ fit procedures for photon E_T cross section evaluation γ +jet selection

The dZ fit procedures for photon η cross section evaluation γ +jet selection

The dZ fit procedures for jet E_T cross section evaluation γ +jet selection

The dZ fit procedures for M_X cross section evaluation γ +jet selection

The dZ fit procedures for Z_{IP} cross section evaluation γ +jet selection

The dZ fit procedures for $\delta \phi$ cross section evaluation γ +jet selection

The dZ fit procedures for $\delta \eta$ cross section evaluation γ +jet selection

The dZ fit procedures for X_{γ} cross section evaluation γ +jet selection

The dZ fit procedures for X_{IP} cross section evaluation γ +jet selection

inclusive

The dZ fit procedures for photon E_T cross section evaluation

The dZ fit procedures for photon η cross section evaluation

The dZ fit procedures for M_X cross section evaluation

The dZ fit procedures for X_{IP} cross section evaluation

HERAII differential cross sections for Z_{IP} , γ +jet selection

black – cross sections normalized to HERA1 total cross section

green – cross sections not normalized

red — cross sections calculated by Peter Bussey

magenta – cross sections calculated by Ian Skillicorn

	$0.0 \div 0.4$	$0.4 \div 0.5$	$0.5 \div 0.6$	$0.6 \div 0.7$	$0.7 \div 0.8$	$0.8 \div 0.9$	$0.9 \div 0.95$	$0.95 \div 1.0$
cr sec, pb	0.210±0.051	0.492±0.161	0.752±0.196	1.461±0.233	1.059±0.195	0.964±0.169	3.951±0.655	5.531±0.739
	0.245±0.059	0.574±0.188	0.878 ± 0.229	1.705±0.272	1.236±0.227	1.124±0.197	4.610±0.764	6.453±0.862
1/acceptance	1.164±0.065	1.096±0.061	1.111±0.052	1.046±0.043	0.967±0.036	0.739±0.029	1.694±0.062	1.541±0.046

The dZ fit procedures for Z_{IP} cross section evaluation γ +jet selection

HERAII, the comparison of $\eta_{
m max}$ data signal distribution to MC Rapgap signal, $\gamma+$ jet selection X_P cut

data – fitted photons, MC is normalized to data

