

Prompt photons + jet in DIS

P. Bussey, O. <u>Hlushchenko</u>, O. Kuprash,

D. Saxon, I. Shyrma,

I. Skillicorn, N. Zhmak

February 2016 ZAF meeting

Physics overview

• Kinematics:

- $Q^2 = -q^2$ virtuality
- $y = \frac{P \cdot q}{P \cdot l}$ inelasticity

Electrons/Positrons: 27.5 GeV

Protons: 920 GeV (820 GeV until 1998)

luminosity of $\approx 374 \, \mathrm{pb}^{-1}$

• $x = \frac{Q^2}{2P \cdot q}$ – longitudinal momentum fraction carried by the incoming parton

Data

- 0405e, 06e, 0607p
- MC
- PYTHIA (signal)
- ARIADNE (background)

Prompt photons

- Photons which are produced promptly in the collision, before the quarks and gluons have had time to form hadrons, and well before those hadrons decay
- High transverse energy final state photons (E_T^{γ})
- Isolated state:
 - no tracks within $\Delta R(\eta, \varphi) = 0.2$ cone around the photon candidate
 - photon candidate has at least 90% of the reconstructed jet energy

prompt photons are emitted from a quark as part of a QCD process (QQ photons)

photon is radiated from an incoming or outgoing lepton (LL photons)

Observables to study

$$\begin{split} \bullet \ \chi_{\gamma} &= \frac{\sum_{jet,\gamma} (E-p_z)}{2y_{Bj}E_e} \quad \bullet \ \Delta\eta_{\gamma,jet} = \eta_{jet} - \eta_{\gamma} \\ \bullet \chi_{p} &= \frac{\sum_{jet,\gamma} (E+p_z)}{2E_p} \quad \bullet \ \Delta\varphi_{\gamma,jet} = \varphi_{jet} - \varphi_{\gamma} \\ \text{Similar kind of analysis was previously done for photoproduction } (Q^2 < 1). \end{split}$$

What was done:

- Moved to new fitting region excluding the first bin from the fit
- Corrected signal shape
- Studied new ways of doing the fit
- Recalculated and compared new cross sections

Signal extraction

Energy-weighted mean width of the electromagnetic shower(cluster) in calorimeter relative to its centroid:

$$\delta Z = \frac{\sum_{zufo} |z_i - z_{cluster}| \cdot E_i}{l_{cell} \sum E_i}$$

Studied fits

- A bin by bin $min\chi^2$ -fitting procedures is done. The minimized functions:
 - 1. $Data-Photons_{MC} * a Background_{MC} * (1-a)$
 - 2. $Data LL_{MC} QQ_{MC} * a Background_{MC} * (1 a) \leftarrow used before$
 - 3. $Data QQ_{MC} * a Background_{MC} * (1-a)$
 - 4. $Data QQ_{MC} * a Background'_{MC} * (1-a)$
- Number of fitted photons is defined:
 - $N = a * N_{data,full} * \frac{N_{sg,full}}{N_{sg,fitted}} + N_{LL,full}$ for (1) and (2) $N = a * N_{data,full} * \frac{N_{sg,full}}{N_{sg,fitted}}$ for (3) and (4)

for data = LL' + QQ' * a + bg' * (1- a)

Changing the fitting region gave us overall ~+5% to number of fitted photons

Δφ_bin-by-bin fit

For data = LL' + QQ' * a + bg' * (1- a) fitting with lan's correction .

Across all the types of fitting the differences in calculated parameters are ~1-2%

Control plots

All the procedures showed good descriprion of data

For data = LL' + QQ' * a + bg' * (1-a) fitting with lan's correction.

 $\Delta \varphi_{e,\gamma}$ Cross sections $\Delta \eta_{e,\gamma}$

For data = LL' + QQ' * a + bg' * (1- a) fitting with lan's correction.

Conclusions

- We analyzed various fitting procedures.
- Defined analysis method. It is compatible with one used in the previous researches.
- Next is to compare results with theoretical models.

is defined as the relation of found with Appendix. Purity - detector level cuts photons to actual

Appendix. Cross sections

 For a given observable Y, the production cross section:

$$\frac{d\sigma}{dY} = \frac{A_{QQ} \cdot N(\gamma_{QQ})}{\mathcal{L} \cdot \Delta Y} + \frac{d\sigma_{LL}^{MC}}{dY}$$

 $N(\gamma_{QQ})$ - number of QQ photons extracted from the fit,

 ΔY - bin width,

 \mathcal{L} -total integrated luminosity, σ_{LL}^{MC} - cross section for LL photons

• $A_{QQ} = \frac{N_{detector\ level}}{N_{true\ level}}$ - acceptance correction for QQ photons

Appendix. Fitting procedure

- For the control plots the next procedures was applied for each bin in terms of new variables separately:
 - LL_{MC} and background_{MC} are scaled to the level of data luminosity
 - QQ_{MC} is scaled to the number of photons candidates in data sample after substraction of predicted LL photons.
 - Background_{MC} was scaled to number of photon candidates in data.
 - A bin by bin $min\chi^2$ -fitting procedures is done. The minimized function:

 a – illustrates the prompt photons fraction in data photon candidates sample

Appendix. Event selection

DIS selection

- $10 < Q_{el}^2 < 350 \ GeV^2$
- Electron cuts:
 - $E_{e,corr} > 10 \text{ GeV}$
 - $140^{\circ} < \theta_{el} < 180^{\circ}$
 - |X| < 14.8, cm
 - |Y| < 14.8, cm

Prompt photon selection

- $4 < E_T^{\gamma} < 15$, GeV
- $-0.7 < \eta_{\gamma} < 0.9$
- $E_{\gamma} \div E_{jet\ with\ \gamma} > 0.9$
- $\Delta R < 0.2$ no tracks
- $E_{EMC} \div (E_{EMC} + E_{HAC})$

• Jet selection (zufos used)

- $E_T^{jet} > 2.5, GeV$
- $-1.5 < \eta_{jet} < 1.8$
- Use jet with $E_{T,max}^{jet}$
- Cleaning
 - Triggers
 - SPP02 for 0405e
 - SPP09 for 06e, 0607p
 - $|Z_{vtx}| < 40, cm$
 - $35 < E p_z < 65$, GeV
 - Number of vertex tracks not in RCAL > 1

Acceptance

Comparison to old results

for data = LL' + QQ' * a + bg' * (1-a)
The range is 0 – 20
The chi-squared 2.76

