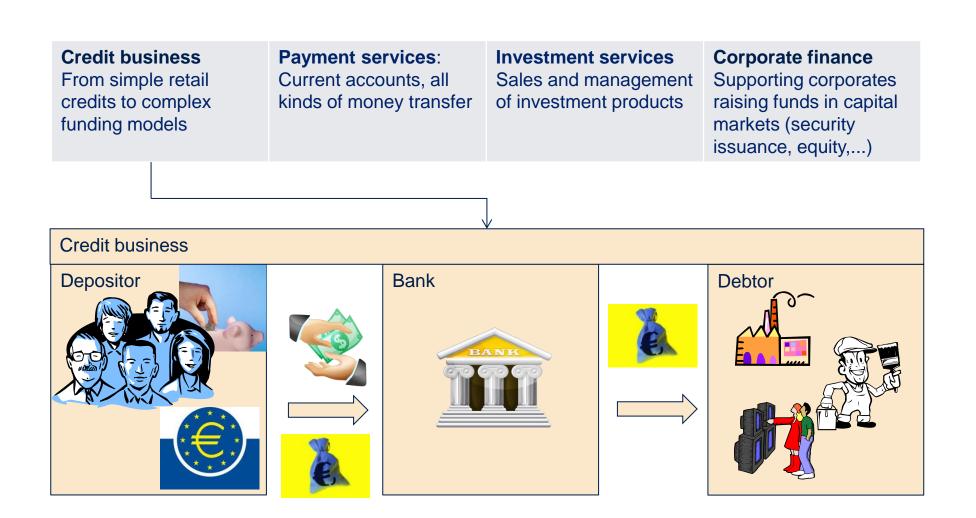
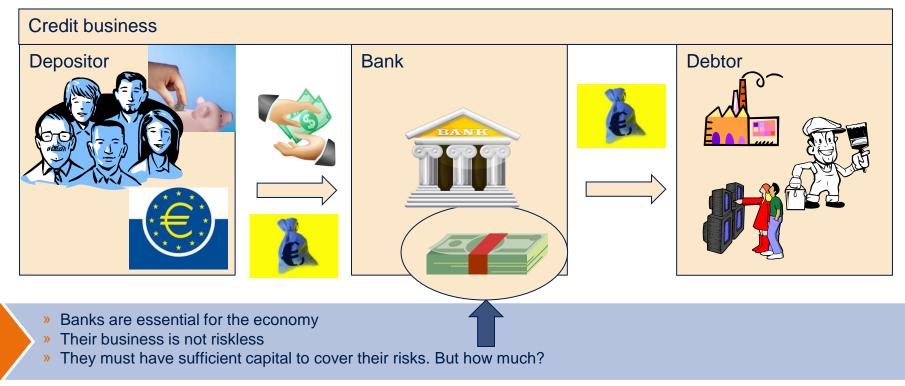
dfine

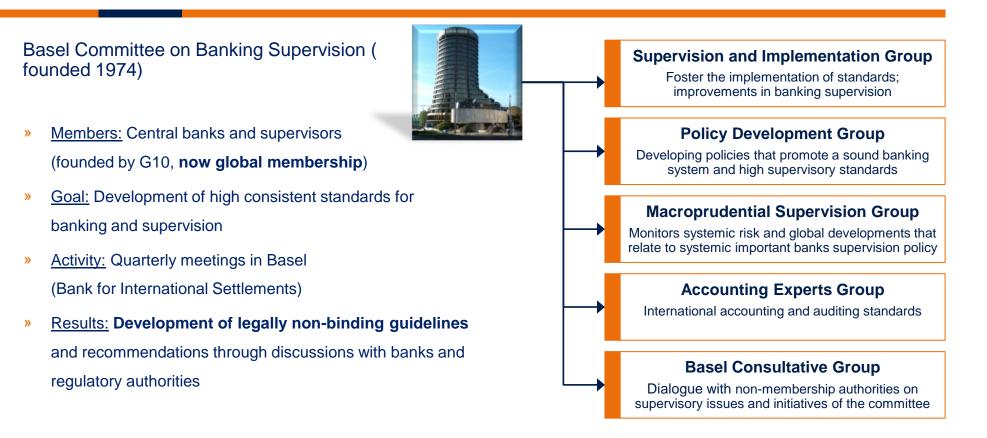

Terascale Statistics School

Introduction to Financial Risk Management

DESY, February 19th 2016


Content

- » Introduction
 - > What is a Bank good for?
 - > Risk and Regulation
 - > Risk Measure
- » Estimation of confidence levels in finance


Economic role of banks

- » Transformation of maturities, e.g. short term deposits in long term loans
- » Lot-size transformation, e.g. small deposits in larger loans
- » Transformation of risk, e.g. risky loans in savings deposits
- » Transfer of monetary policy (interest rates)

dfine

A. Introduction Risk and Regulation

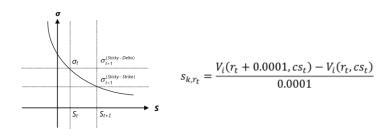
Global banking regulation is strongly influenced by the Basel Committee

A. Introduction Risk and Regulation

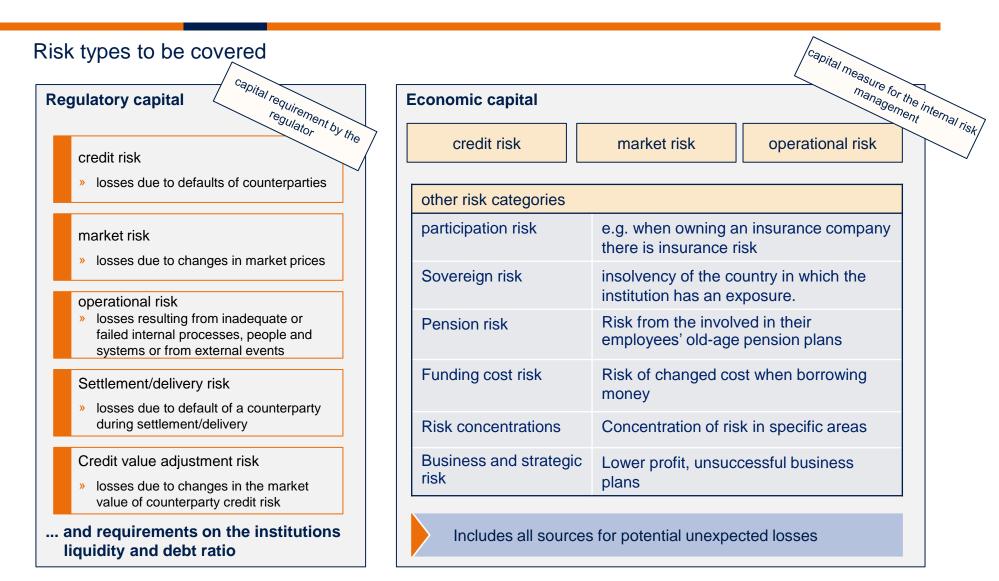
» The regulatory requirements are detailed requirements EU Capital Requirement Regulation (337 p) law in all member states REGULATIONS REGULATION (EU) No 575/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 June 2013 on prudential requirements for credit institutions and investment firms and amending Regulation (EU) No 648/2012 (Text with EEA relevance) EU Capital Requirement Directive (99 p) to be implemented by countries DIRECTIVES DIRECTIVE 2013/36/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 June 2013 on access to the activity of credit institutions and the prudential supervision of credit institutions and investment firms, amending Directive 2002/87/EC and repealing Directives 2006/48/EC and 2006/49/EC (Text with EEA relevance)

e.g. it defines the risk weight for a lending to an central governments and central banks depending on the rating

Credit quality step	1	2	3	4	5	6
Risk weight	0 %	20 %	50 %	100 %	100 %	150 %


Roughly speaking the capital requirement (in the standardized approach) is:

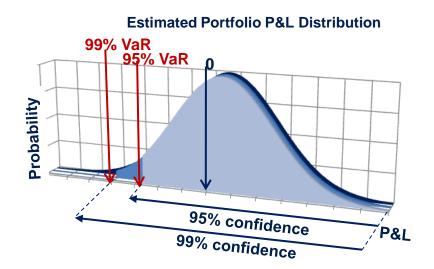
capital requirement = 8% * risk weight * debt


» ... and there are many more guidelines by regulatory agencies (European Banking Authority, Bundesanstalt für Finanzdienstleistungsaufsicht, ..)

This section provides an overview of the EBA's regulatory a	ctivity classified by topic, ranging from binding Technical Stand	lards to Guidelines, Recommendations and Opinions.
Many of the regulatory products presented in this section and the "CRD IV package" and the BRRD.	e a key contribution to the building up of the Single Rulebook in	banking regulation, stemming from EU legislative texts such a
	Single Rulebook	
Topics		
Accounting and auditing	Leverage ratio	Recovery, resolution and DGS
Anti-money laundering	Liquidity risk	Remuneration
	Market infrastructures	Securitisation and covered bonds
Colleges of supervisors		
Colleges of supervisors Consumer protection and financial innovation	Market risk	Supervisory reporting
	Market risk Model validation	Supervisory Review and Evaluation Process
Consumer protection and financial innovation		Supervisory Review and Evaluation Process (SREP) and Pillar 2
Consumer protection and financial innovation Credit risk	Model validation	Supervisory Review and Evaluation Process

» detailed means for example that they tell you how to calculate derivatives

A. Introduction Risk and Regulation


d-fine

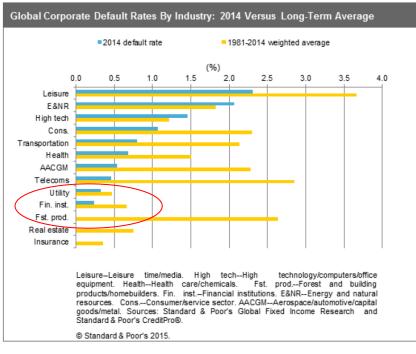
A. Introduction Market Risk Measure

Value-at-Risk (VaR)

The Value-at-Risk of a portfolio over a certain time horizon T is the maximum loss which will not be exceeded with a given probability (one sided confidence level).

- » VaR is measured in monetary units (e.g. €).
- » VaR is the risk measure mainly used in conjunction with regulatory and economic capital

... VaR quantifies potential portfolio losses based on historical data


Quantitative Requirements

	confidence level	holding period
Regulatory capital		
credit risk (IRB approach)	99,9 %	one year
operational risk (Advanced Measurement Approach)	99,9 %	one year
market risk (internal model)	99 %	10 day
Economic capital		
typical value	99,9 %	one year

corres

corresponds to only one default per year per thousand banks

It is essential that the risk determination is done independently from the trading department

d_fine

Modelling Market Risk

Use Case

» Suppose we have an investment (1 year horizon) of

- > 0.1 unit of a DAX Fund with current value of €8,967
- > 10 units of a MSCI Word Fund with current value of \$67
- > 1 unit of gold with current value of €1,100
- > 1 unit of a bond with current value of €500 (approximated by an interest rate index)
- » What is the risk I am exposed to?
- » Our program to answer this question:

Pricing = What is the price of my investment under changed market conditions? In our case:

$$V = 0.1 \cdot V_{DAX} + 10 \cdot V_{MSCI} / FX_{EUR \setminus USD} + 1 \cdot V_{gold} + 1 \cdot V_{bond}$$

Risk factors modelled as stochastic parameter

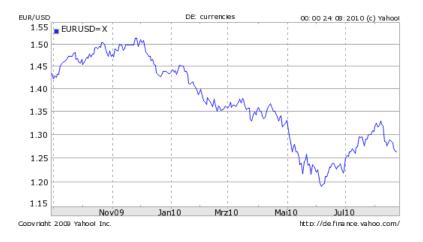
d_fine

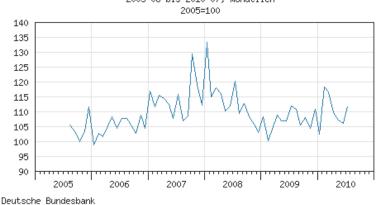
B. Estimation of confidence levels in finance

Portfolio pricing is quite complicated because of a large variety of products

Financial Instruments

- There is no unique classification of financial instruments. Every classification depends on its purpose and may therefore refer to different aspects of the financial instruments (e.g. accounting categories, financial mathematics aspects).
- » Here is an example of very simple classification according to the main market risk drivers:


Interest rate products	Equity products	FX products	Commodity derivatives	Credit products
 » Corporate Bonds » Government Bonds » Swaps » Loans » Bond Options » Swaptions » Caps/Floors » IR Futures » 	 » Shares » Equity Options » Index Options » Equity Certificates » Basket Options » 	 » FX Cash » FX Forwards » FX Options 	 > Crude Oil > Gas Oil > Base Metals > Precious Metals > Coal > Power > 	 Credit Default Swaps Credit Spread Options Securitisations Credit Index Products Credit Basket Derivatives


Different financial instruments are sensitive to different aspects of market risk.

Market Risk of Financial Instruments – Motivation

The **current (market) value** of a financial instrument is subject to the current **market conditions**. Therefore the **value** of any financial product will usually **fluctuate** from one day to another (and also during the day) due to changes in the market conditions.

Market conditions can be quantified by (or from) quantities that can be **observed** in the market, e.g., exchange rates or equity courses.

The quantities that quantify market conditions reflect the market's current opinion, which in turn depend on more or less unpredictable economic variables (e.g. unemployment rate, company news, GDPs, ...) and psychology (the reactions of the market to any news are also more or less unpredictable).

Therefore the quantities quantifying the market conditions need to be modelled as stochastic variables.

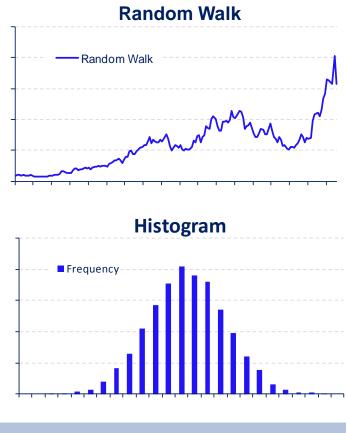
Value of financial instruments depends on (stochastic) market conditions.

D-Ges / Auftragseingang / Werte / saisonbereinigt / Bauhauptgewerbe 2005-08 bis 2010-07, monatlich

B. Estimation of confidence levels in finance 2 Modelling of Risk Factors

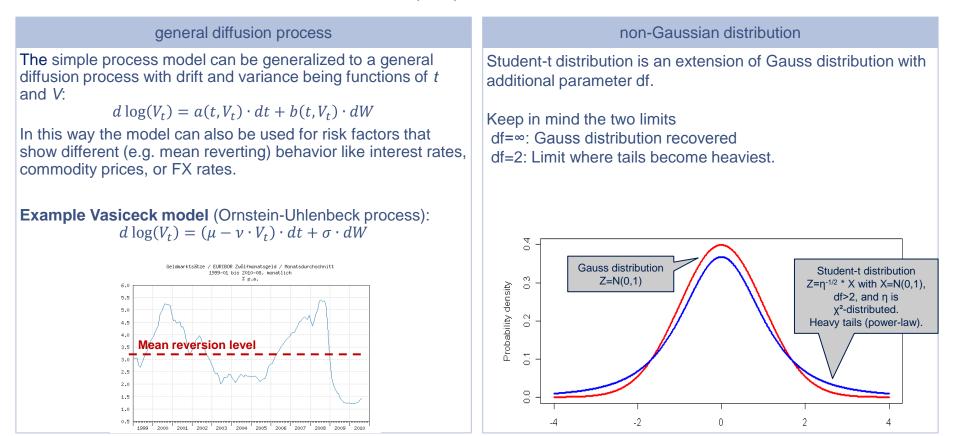
Random Walk

Risk Factors – Stochastic Processes (1/3)


For the number of steps r_1 , r_2 r_3 r_4 , r_4 r_5 r_6 r_7 r_7 r_8 r_7 r_8 r_7 r_8 $r_$

$$p(r) = \frac{1}{\sqrt{2\pi \cdot \operatorname{var}(r)}} \cdot \exp\left[-\frac{(r - \langle r \rangle)}{2 \cdot \operatorname{var}(r)}\right]$$

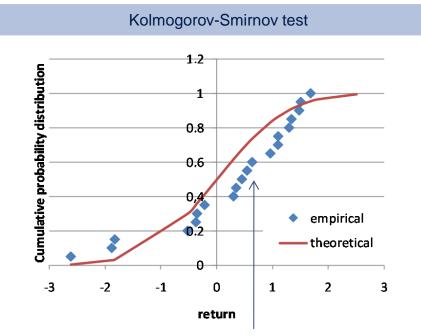
r₇


The **number of steps** in the random walk n is proportional to the **time** Δt that passes during the random walk.

This also holds for **absolute returns** (relative returns do not follow a random walk but one can still assume that they are normally distributed).

Random walk is a popular process used to model risk factors

Risk Factors – Stochastic Processes (2/3)



The simple diffusion model can be generalized to more complex processes

d_fine

B. Estimation of confidence levels in finance Modelling of Risk Factors

Risk Factors – Stochastic Processes (3/3)

Test statistics is the largest difference of the cumulative distribution function \rightarrow P-value

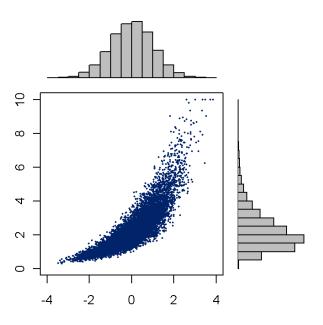
- » For any given cumulative probability value the number of observed values follows a binominal statistics independent of the distribution of the stochastic variable
- Thus, the test is universal and can be applied to any hypothetical probability distribution

Limitations of the calibration The estimation of the mean return value has large errors » We cannot use the fit value for an estimate of the expected **»** long-term return For the purpose of risk estimation we will set the drift of the **»** process to 0

dfine

B. Estimation of confidence levels in finance

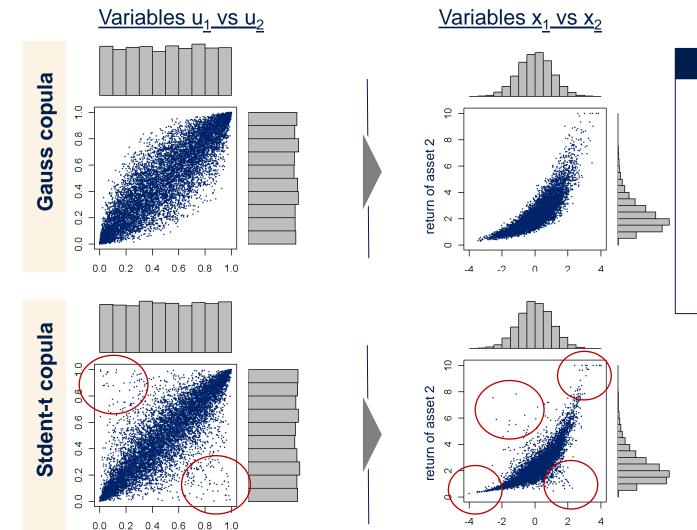
Modelling the dependence structure


Modelling dependence structure with copulas is very popular.

» Given a n-dimensional multivariate cumulative probability distribution CPD(x1,...,xn) and the corresponding marginal distributions CPD₁(x₁),...,CPD_n(x_n) the (elliptical) copula C:[0, 1]ⁿ → R describes the dependency structure of the random variables x₁,...,x_n according to

$$C(u_1,...,u_n) = CPD[x_1,...,x_n]$$

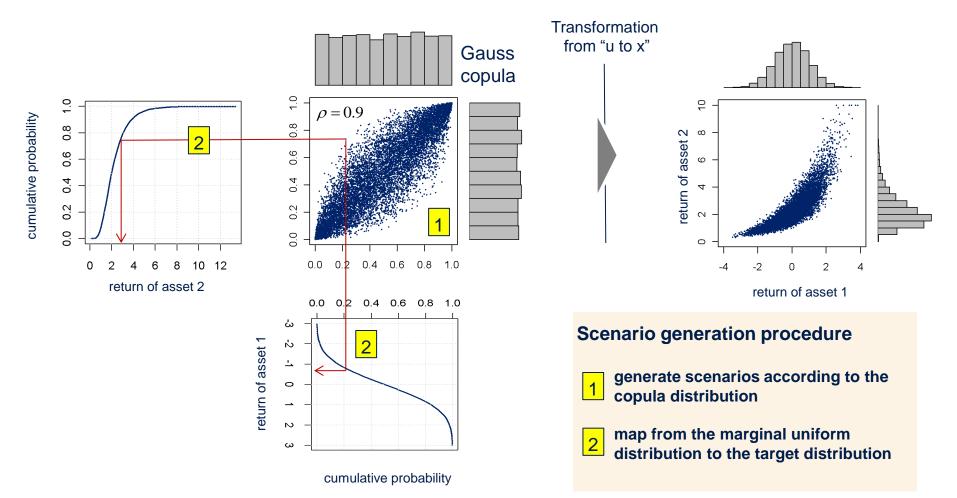
where $u_i = CPD_i(x_i)$ are uniformly distributed.


The purpose of the copula concept is to model the full dependency structure of random variables beyond a correlation matrix approach.

A copula approach decouples marginal distributions and dependence structure

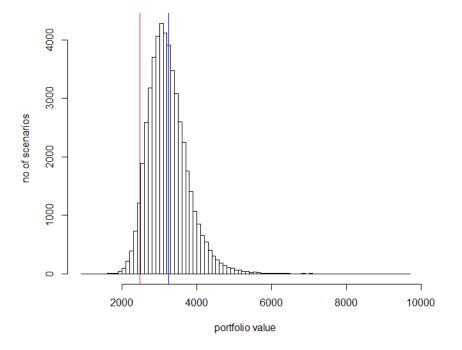
B. Estimation of confidence levels in finance

Modelling the dependence structure

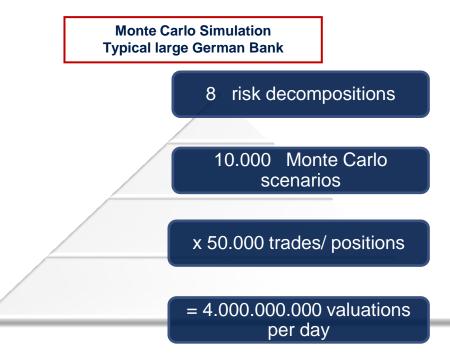

t copula vs. Gauss copula

- A Gauss copula with normal marginal distributions is multivariate normal distribution
- » A t-copula has one extra parameter df. A Gauss copula is a t-copula with df →∞.
- » A t-copula has a higher tail dependence, i.e. when losses are high correlation increase as observed in a crisis
- » More extreme events with a tcopula

dfine


B. Estimation of confidence levels in finance Forecast / Monte Carlo Simulation

The generation of Monte Carlo scenarios is a two step procedure.



» Result of the Monte Carlo simulation is a forecast distribution from which the Value-at-risk can be deduced:

- » In our case: $VaR_{95\%,1y} \approx 24\%$
- » This one has to compare with the expected gain (which is much less)

- » ... many and complex products
- » ... much more parameter
- » ... calibration is more difficult because of calculated market data
- » ... more requirements than calculating only a "standard VaR"
- » ... many more deals

... and Market Risk is only one topic where mathematical skills are required

Thorsten Oest

Senior Manager	
Tel	+49 89 7908617-332
Mobil	+49 151 14819-332
E-Mail	Thorsten.Oest@d-fine.de

Jochen Meyer

+49 89 7908617-387
+49 162 2630-002
Jochen.Meyer@d-fine.de

d-fine GmbH

Frankfurt München London Wien Zürich

Zentrale

d-fine GmbH Opernplatz 2 D-60313 Frankfurt/Main

Tel +49 69 90737-0 Fax +49 69 90737-200

www.d-fine.com

dfine