Particle physics going 'gaga'.

Kai Schmidt-Hoberg

Overview of theoretical interpretations of the diphoton excess

Current count ~ 175 papers

No paper out today

- ~170 spin-0 resonance
 - ~5 spin-2 resonance
 - ~1 spin-1 resonance
 - ~5 parent resonance/kinematic edge

Observation (ATLAS + CMS).

Some tension with run 1 data...

Signal cross section should grow significantly to be consistent

Width: largish width of ~ 40 GeV slightly preferred (not significant)

1512.05777

Kai Schmidt-Hoberg | Particle physics going 'gaga' | 2/3 February 2016 | Page 2

Simplest explanation: A resonance at 750 GeV

Narrow width approximation OK

$$\sigma(pp \to \gamma\gamma) \approx \sigma(pp \to \Phi) \cdot BR(\Phi \to \gamma\gamma)$$

Possible parton initial states are qq, gg, VV

Increase in cross section depends on initial state:

<3.9 from finite size

1512.04933

final	σ at $\sqrt{s} = 8 \text{TeV}$	implied bound on
state f	observed	$BR(S \to f)/BR(S \to \gamma \gamma)$
$\boxed{e^+e^-+\mu^+\mu^-}$	< 1.2 fb	< 0.6 (r/5)
$ au^+ au^-$	$< 12 {\rm ~fb}$	$< 6 \ (r/5)$
$Z\gamma$	$< 4.0 { m ~fb}$	$< 2 \ (r/5)$
ZZ	$< 12 {\rm ~fb}$	$< 6 \ (r/5)$
Zh	$< 19 {\rm ~fb}$	$< 10 \ (r/5)$
hh	$< 39 {\rm ~fb}$	< 20 (r/5)
W^+W^-	$< 40 {\rm ~fb}$	$< 20 \ (r/5)$
$tar{t}$	$< 550 { m ~fb}$	$< 300 \ (r/5)$
$b\overline{b}$	$\lesssim 1\mathrm{pb}$	$< 500 \ (r/5)$
jj	$\lesssim~2.5~{ m pb}$	$< 1300 \ (r/5)$

 $BR(\Phi \to \gamma \gamma)/BR(\Phi \to \text{SM SM})) \gtrsim 10^{-3}$

Could it be the SM + 750 GeV resonance?

1512.04928

Is it possible to have **only** SM states contributing to the effective couplings?

Is it possible to have **only** SM states contributing to the effective couplings?

Excluded by bounds from resonance searches in WW, tt, ...

Need additional BSM states!

Landau-Yang theorem:

For a two photon final state the resonance could have **spin 0 or spin 2**.

98% of papers have considered spin 0

Natural production process: gluon fusion

Very simple working model (narrow width): Resonance + vector-like fermions M > 375 GeV

The extra fermions induce effective couplings

$$\mathcal{L}_{(\text{int})}^{d=5} = \frac{S}{\Lambda} \left[c_{GG} \, G^{A\,\mu\nu} G^A_{\mu\nu} + c_{WW} \, W^{I\,\mu\nu} W^I_{\mu\nu} + c_{BB} \, B^{\mu\nu} B_{\mu\nu} \right]$$

What are promising search channels?

If couplings are large enough \rightarrow dijets

Gluon couplings can be much smaller (cancels out of production * BR)

Cannot be tested at LHC?!

ത്ത

 ∞

Φ

NP

Fermions in the loop are charged under SM gauge group (not electromagnetism) \rightarrow mixing

Irreducible contributions to ZZ, WW, Zgamma

Can have cancellations, but only two operators for four couplings

$$\begin{array}{c|c} \text{operator} & \frac{\Gamma(S \to Z\gamma)}{\Gamma(S \to \gamma\gamma)} & \frac{\Gamma(S \to ZZ)}{\Gamma(S \to \gamma\gamma)} & \frac{\Gamma(S \to WW)}{\Gamma(S \to \gamma\gamma)} \\ \hline \\ \hline WW \text{ only } & 2/\tan^2\theta_W \approx 7 & 1/\tan^4\theta_W \approx 12 & 2/\sin^4\theta_W \approx 40 \\ \hline \\ BB \text{ only } & 2\tan^2\theta_W \approx 0.6 & \tan^4\theta_W \approx 0.08 & 0 \end{array}$$

Direct searches for the extra fermions, m > 375 GeV

How does this fit into known models?

$$BR(\Phi\to\gamma\gamma)/BR(\Phi\to{\rm SM~SM}))\gtrsim 10^{-3}$$

Large BR into photons - problematic for 2HDM, MSSM!

For **R-parity conservation**, candidates are heavy Higgses H,A

 \rightarrow does not work 1512.05332

Again need additional states...

If you love SUSY and signal genuine \rightarrow beyond MSSM ?!

G Weiglein: with R parity violation everything possible :-)

Possible interpretation in the MSSM with R parity violation:

1512.07645

Large enough rate: Mass of stau 375 GeV < m < 388 GeV

In the given model: dd initial state \rightarrow strong tension with run 1 data

Even with R parity violation challenging to explain in MSSM!

The minimal model

• The minimal case: only effective couplings to photons (well, not only...)

1512.05751

- No new colored states needed
- possible detection of forward protons from elastic photoproduction
- Tension with run 1 data

What if the width is large?

Large width is difficult to achieve in the simple model with gg initial state (only loop induced decay modes) \rightarrow also ruled out by dijets...

Need additional annihilation channels (tree-level)

But then also need to increase partial width into two photons

Option for a large width (if not several states at 750 GeV):

- New strong dynamics (similar to QCD) 1512.04850
- Large invisible width ('dark matter mediator')?

 → Constraints from monojet searches, but not excluded
 1512.06842
 Journal club by Felix next week (18/02, 12am, theory common room)
- Tree-level decays 1512.04928

1512.06376

Spin-2 resonance much less studied

Only fundamental spin-2 particle: graviton

Candidate: KK excitation of graviton in extra dimensions

Couplings to SM states depend on localization in extra dimensions

Difference to spin $0 \rightarrow$ different angular distributions

Spin 1 - Evading Landau-Yang

Could it be a vector resonance despite Landau-Yang? 1

1512.06833

Ingredients naturally present in Z' models:

- Higgs boson to break the U(1)'
- Anomalies: Extra fermions (non-colored) will generate couplings

3rd generation couplings (bb initial state)

Naturally large width (strongest constraint)

excluded by $t\bar{t}$

collimated

A parent resonance would allow for better Run-1/Run-2 compatibility

Naturally additional signatures such as etxra jets, MET, ...

Search is inclusive, but nothing suspicious seen...

To suppress MET need $\Delta = m_P - m_S - m_R$ small

- Large number of possible interpretations of the 750 GeV excess
- Spin 0,1,2 resonance as well as non-resonant physics could work
- Almost too simple to write down a working model (unlike a number of other anomalies say top forward backward asymmetry)
- However, vanilla MSSM or 2HDM don't work
- Need additional new states, which should be accessible!
- Overall: many theorists in excited state (at least until summer)

