The non-resonant production of the diphoton excess

Jürgen R. Reuter, DESY

work together with Jong-Soo Kim, Krzysztof Rolbiecki and Roberto Ruiz de Austri based on arXiv:1512.06083

Diphoton excess: non-resonant production

Recap of the events

ATLAS CMS		
$p_T(\gamma) \ge 25 \text{ GeV}$	$p_T(\gamma) \ge 75 \text{ GeV}$	
$ \eta^{\gamma} \leq 2.37$	$ \eta^{\gamma} \le 1.44 \text{ or } 1.57 \le \eta^{\gamma} \le 2.5$	
	at least one γ with $ \eta^\gamma \leq 1.44$	
$E_T^{\gamma_1}/m_{\gamma\gamma} \ge 0.4, \ E_T^{\gamma_2}/m_{\gamma\gamma} \ge 0.3$	$m_{\gamma\gamma} \ge 230 \text{ GeV}$	

J.R.Reuter

Diphoton excess: non-resonant production

Local p-value

The model setup

• Assume composite model with pseudoscalars η, σ

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \eta \partial^{\mu} \eta - m_{\eta}^{2} \eta^{2} \right) + \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) + \lambda \sigma \eta \eta$$

Couplings to SM gauge bosons via dim-5 operators (WZW anomaly)

$$\mathcal{L}_{\eta VV} = \sum_{V=g,W,B} \kappa_V^{\eta} \frac{g_V^2}{32\pi^2} \frac{1}{F_{\eta}} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}^V F^{V,\mu\nu} \eta$$

- Underlying model with 2-3 fundamental fermions: Q_1 , Q_2
- more details: Cacciapaglia/Deandrea/Hashimoto, 1507.03098; Harigaya/Nomura, 1512.04850

Gauge group: $SU(N) \times SU(3)_c \times SU(2)_L \times U(1)_Y$

$$egin{aligned} Q_1: \ (\mathbf{N},\mathbf{1},\mathbf{2},a) & Q_2: \ (\mathbf{N},\mathbf{3},\mathbf{1},b) \ & \eta \sim \langle Q_1 Q_1
angle & \sigma \sim \langle Q_2 Q_2
angle \end{aligned}$$

Trilinear coupling $\sigma\eta\eta$ e.g. in Little Higgs models Chiral perturbation theory: $\sigma(\partial_{\mu}\eta\partial^{\mu}\eta)$

J.R.Reuter

Diphoton excess: non-resonant production

Recast and scan procedure

- Simulation with FeynRules 2.3.13, Madgraph 5.2.2.3, WHIZARD 2.2.8, Pythia 6.427
- Fast detector simulation with Delphes 3.10
- ATLAS and CMS diphoton searches implemented in CheckMate 1.2.2 / AnalysisManager
- Defining signal region 700 GeV < m_{YY} < 800 GeV [ATLAS / CMS didn't provide any]
- CMS regions divided into barrel and endcap regions (EBEB and EBEE)
- Due to non-resonant nature: $\gamma\gamma$ pair can have considerable p_T (vanishing close to threshold)
- Using a χ^2 test statistic

$$\chi_i^2 = \frac{(n_i - \mu_i)^2}{\sigma_{i,\text{stat}}^2 + \sigma_{i,b}^2}$$

 $\mu_i = \mu_{i,b} + \mu_{i,s}$

i : ATLAS, CMS EBEB, CMS EBEE

Systematic errors combine experimental ones with 10% on event yield from CheckMate

Parameter	Description	Value or range	
m_{σ}	mass of heavier resonance	[1.5 TeV, 2.5 TeV]	
m_η	mass of lighter resonance	$750 {\rm GeV}$	
λ	dimensionfull $\eta \sigma \sigma$	[0. TeV, 1.5 TeV]	
F_{η}	η decay constant	$1 { m TeV}$	
F_{σ}	σ decay constant	$1 { m TeV}$	
κ_g^η	anomaly coefficient	0	
κ_W^η	anomaly coefficient	0	
κ^η_B	anomaly coefficient	1	
κ_{q}^{σ}	anomaly coefficient	[0, 15]	
κ_W^{σ}	anomaly coefficient	0	
κ_B^{σ}	anomaly coefficient	0	

Diphoton excess: non-resonant production

Recast of the events: fitting

only one observable \implies flat direction (κ^{σ_g} enhances σ production rate, λ decreases $\eta\eta$ decay rate

Best fit point: $m_{\sigma} = 1.75 \text{ TeV}, \kappa^{\sigma_g} = 4.3, \lambda = 0.22 \text{ TeV}$

Diphoton excess: non-resonant production

Checks and consistencies

CMS more consistent with no-signal hypoth.

ATLAS prefers higher events yields

signal region	observed	background	best fit	$\Delta \chi^2$
ATLAS	28	11.4 ± 3	12.0	0.56
CMS EBEB	14	9.5 ± 1.9	8.1	0.74
CMS EBEE	16	18.5 ± 3.7	1.3	0.48

Degeneracy can be broken by looking for σ in dijets

Diphoton excess: non-resonant production

Checks and consistencies

CMS more consistent with no-signal hypoth.

ATLAS prefers higher events yields

signal region	observed	background	best fit	$\Delta \chi^2$
ATLAS	28	11.4 ± 3	12.0	0.56
CMS EBEB	14	9.5 ± 1.9	8.1	0.74
CMS EBEE	16	18.5 ± 3.7	1.3	0.48

Degeneracy can be broken by looking for σ in dijets

CMS dijet limit [m_{σ} = 1.75 TeV]: 1.8 pb visible xsec., 60% efficiency: σ < 3 pb $\implies \kappa^{\sigma_g} \lesssim 25$

12

14

J.R.Reuter

Diphoton excess: non-resonant production

Checks and consistencies

CMS more consistent with no-signal hypoth.

ATLAS prefers higher events yields

signal region	observed	background	best fit	$\Delta \chi^2$
ATLAS	28	11.4 ± 3	12.0	0.56
CMS EBEB	14	9.5 ± 1.9	8.1	0.74
CMS EBEE	16	18.5 ± 3.7	1.3	0.48

Degeneracy can be broken by looking for σ in dijets

CMS dijet limit [m_{σ} = 1.75 TeV]: 1.8 pb visible xsec., 60% efficiency: σ < 3 pb $\implies \kappa^{\sigma_g} \lesssim 25$

Diphotons in 8 TeV: gg xsec. 15x smaller, lumi 6x larger, event yield in ATLAS for best fit: 4.8 events, 23.1/21.9 obs./exp.

Summary

- Interpretation of ATLAS/CMS diphoton excess as simplified composite model
- Non-resonant production through heavier (pseudo-)scalar state
- Original motivations: tension with 8 TeV data, connection to [gone] 2 TeV excess
- Recast of ATLAS / CMS analysis
- Fit prefers rather light additional resonance: 1.75 TeV
- Operator coefficients of 'usual' size
- No information on p_T spectrum of photons and additional event activity
- One observable effectively: no sensitivity e.g. to structure of trilinear coupling

J.R.Reuter

Diphoton excess: non-resonant production