Polonyi Inflation

Dynamical Supersymmetry Breaking and Late-Time *R* Symmetry Breaking as the Origin of Cosmic Inflation

Kai Schmitz

Postdoc in the Particle and Astroparticle Physics Division at Max Planck Institute for Nuclear Physics (MPIK), Heidelberg, Germany

Based on *arXiv:1604.xxxxx [hep-ph]* (to appear tomorrow). In collaboration with Tsutomu T. Yanagida (IPMU).

DESY Theory Seminar | DESY Hamburg, Germany | April 18, 2016

Polonyi Inflation

Inflation and Supersymmetry Breaking Unified

Kai Schmitz

Postdoc in the Particle and Astroparticle Physics Division at Max Planck Institute for Nuclear Physics (MPIK), Heidelberg, Germany

Based on *arXiv:1604.xxxxx [hep-ph]* (to appear tomorrow). In collaboration with Tsutomu T. Yanagida (IPMU).

DESY Theory Seminar | DESY Hamburg, Germany | April 18, 2016

Goal of this Talk

Inflation as a pillar of modern cosmology

[Guth '81; Linde '82; Albrecht & Steinhardt '82]

[PLANCK '15]

Inflation: a stage of accelerated expansion in the early universe

- Explains the size, homogeneity, and isotropy of our Universe on cosmological scales.
- Quantum fluctuations during inflation seed structure formation on galactic scales.

However: Plethora of models in the literature. Origin in particle physics rather unclear.

This talk: Link b/w inflation and supersymmetry. Answer to the question: Why inflation?

Status of supersymmetry in early 2016

Low-scale supersymmetry under pressure:

- No SUSY signals at the LHC, so far.
- SM Higgs boson mass of a 125 GeV calls for large stop loop corrections.

No need to give up on SUSY altogether:

- *R* parity \rightarrow stable LSP \rightarrow dark matter.
- Gauge unification at $\Lambda_{GUT} \sim 10^{16} \, {\rm GeV}$.
- UV completion of the SM in string theory.

What if we let go of the notion that SUSY is responsible for stabilizing the EW scale?

- Allow for soft sparticle masses of O(10) TeV and larger.
- ▶ No more gravitino / Polonyi problems in cosmology. Less tension from CP & FCNCs.
- Simple mediation to the visible sector: solely via gravitational interactions (PGM). [Giudice, Luty, Murayama & Rattazzi '98] [Wells '03; '05] [Arkani-Hamed & Dimopoulos '05] [Ibe, Moroi & Yanagida '07; Ibe & Yanagida '12] [Arkani-Hamed, Guota, Kaplan, Weiner & Zorawski '12] [Hall & Nomura '12] [Arvanitaki, Craio, Dimopoulos & Villadoro '13]

SUSY breaking as the origin of inflation

Another intriguing possibility in high-scale supersymmetry:

Spontaneous SUSY results in a nonzero contribution to the vacuum energy density:

$$\langle V \rangle = \Lambda_{\rm SUSY}^4 \,, \quad \Lambda_{\rm SUSY}^2 \sim \langle F \rangle \text{ or } \langle D \rangle$$

Our idea: If Λ_{SUSY} large enough, Λ_{SUSY}^4 may be the vacuum energy driving inflation!

SUSY breaking as the origin of inflation

Another intriguing possibility in high-scale supersymmetry:

Spontaneous SUSY results in a nonzero contribution to the vacuum energy density:

$$\langle V \rangle = \Lambda_{\rm SUSY}^4 \,, \quad \Lambda_{\rm SUSY}^2 \sim \langle F \rangle \,\, {\rm or} \,\, \langle D \rangle$$

Our idea: If Λ_{SUSY} large enough, Λ_{SUSY}^4 may be the vacuum energy driving inflation!

Consider SUSY breaking via nonzero F-terms: [O'Ralfeartaigh '75]

- Nonzero vacuum energy density Λ⁴_{SUSY}.
- In global SUSY, flat direction at tree level. [Ray '06] [Shih '08]
- Flatness of the potential protected by SUSY nonrenormalization theorem. [Grisaru, Siegel & Rocek '79] [Seiberg '93]

Our goal: Realize successful inflation in the Polonyi model. \rightarrow Polonyi inflation!

Simplest example: the Polonyi model [Polonyi '78]

Kai Schmitz (MPIK Heidelberg)

SUSY breaking in the presence of gravity

In gravity, make sure that the cosmological constant (CC) ends up being (almost) zero:

- As pointed out by Weinberg, CC <>>> 1 necessary to render our Universe habitable. [Weinberg '87; '89]
- ► In SUGRA this means: cancel $|\langle F \rangle|^2$ by a nonzero VEV of the superpotential, $|\langle W \rangle|^2$,

$$\left| \langle V \rangle = \left| \langle F \rangle \right|^2 - 3 e^{\langle K \rangle} \left| \langle W \rangle \right|^2 \stackrel{!}{=} 0 \left|, \quad M_{\text{Pl}} = (8\pi G)^{-1/2} = 1 \right|$$

▶ E.g., in the Polonyi model, constant in the superpotential: $w \rightarrow w_0 = (2 - \sqrt{3}) \mu^2$.

Consequence: $w_0 \subset W$ leads to large SUGRA corrections and spoils slow-roll inflation.

Only way out: Unbroken *R* symmetry in the sector responsible for $w_0 \Rightarrow w = 0$ initially.

Task: Find a realization of the Polonyi model featuring *late-time R symmetry breaking*.

Two avenues towards a vanishing cosmological constant

Interplay between SUSY and R symmetry breaking:

- ▶ $\langle F \rangle$ and $\langle W \rangle$ → order parameters of SUSY and *R* symmetry breaking, respectively.
- ► Assume SUSY and *R* symmetry are broken dynamically at times *t*_{SUSY} and *t_R*.

Assume there are no other sources of inflation present in theory:

- Universes (feat. SUSY and CC = 0) that are habitable to life are bound to experience inflation & late-time R symmetry breaking! ⇒ Reason for inflation in our cosmic past!
- Fine-tuning of the CC coincides with the generation of $w \subset W$ at the end of inflation.

Goal of this Talk

Our starting point for a realistic model of Polonyi inflation

• Unbroken *R* symmetry in the sector responsible for the generation of $w \subset W$:

- We shall assume a discrete, anomaly-free R symmetry: Z^R_N [Krauss & Wilczek '89] [Ibanez & Ross '91; '92] [Banks & Dine '92] [Ibanez '93]
- ► Global continuous *R* symmetry *U*(1)_{*R*} explicitly broken in quantum gravity. [Banks & Selberg '11]
- Local continuous R symmetry U(1)_R leads to conflicts with anomaly constraints. [Antoniadis & Knoops '14, '16] [Antoniadis, Ghilencea & Knoops '15]
- Discrete R symmetries follow from orbifold compactifications of the heterotic string. [Font, Ibanez, Nilles, Quevedo '88] [Kobayashi, Raby & Zhang '05]
- Best candidate: Z^R₄, also allows to solve the μ problem in the MSSM. [Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg & Vaudrevange '11; '11] [Kappl, Petersen, Raby, Ratz, Schieren & Vaudrevange '11]

Goal of this Talk

Our starting point for a realistic model of Polonyi inflation

• Unbroken *R* symmetry in the sector responsible for the generation of $w \subset W$:

- We shall assume a discrete, anomaly-free R symmetry: Z^R_N [Krauss & Wilczek '89] [Ibanez & Ross '91; '92] [Banks & Dine '92] [Ibanez '93]
- Global continuous R symmetry U(1)_R explicitly broken in quantum gravity. [Banks & Seiberg '11]
- Local continuous R symmetry U(1)_R leads to conflicts with anomaly constraints. [Antoniadis & Knoops '14, '16] [Antoniadis, Ghilencea & Knoops '15]
- Discrete R symmetries follow from orbifold compactifications of the heterotic string. [Font, Ibanez, Nilles, Quevedo '88] [Kobayashi, Raby & Zhang '05]
- Best candidate: Z^R₄, also allows to solve the μ problem in the MSSM. [Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg & Vaudrevange '11; '11] [Kappl, Petersen, Raby, Ratz, Schieren & Vaudrevange '11]

2 Strong gauge dynamics accounting for μ and w in the Polonyi superpotential:

- UV completion in the context of strongly coupled supersymmetric gauge theories.
- No dimensionful input parameters. All mass scales generated via dim. transmutation: [Affleck, Dine & Seiberg '84; '84; '85]

$$\Lambda_{\rm SUSY}\equiv\Lambda_{\rm inf}\sim\Lambda$$

Program: Find UV completion of the Polonyi model, identify flat tree-level direction in global SUSY, study inflationary potential in dependence of *gravitational and radiative corrections*.

Outline

- 1 Dynamical Inflation in the IYIT Supersymmetry Breaking Model
- 2 Spontaneous *R* Symmetry Breaking after the End of Inflation
- 3 Phenomenological Implications
- 4 Conclusions and outlook

Outline

1 Dynamical Inflation in the IYIT Supersymmetry Breaking Model

- 2 Spontaneous *R* Symmetry Breaking after the End of Inflation
- 3 Phenomenological Implications
- 4 Conclusions and outlook

Why loop corrections? Inflation in the bare Polonyi model

Study viability of inflation in the original Polonyi model for different choices of K and w:

Superpotential:

$$W = \mu^2 \Phi + w$$

Kähler potential (the usual suspects):

$$\begin{split} \mathcal{K}_{can} &= |\Phi|^2 + \frac{\varepsilon}{4} \, |\Phi|^4 + \cdots \\ \mathcal{K}_{shi}^{\pm} &= \pm \frac{1}{2} \left(\Phi \pm \Phi^{\dagger} \right)^2 \mp \frac{\varepsilon}{2} \left(\Phi \mp \Phi^{\dagger} \right)^2 + \cdots \end{split}$$

	$\kappa_{\rm can}~(\epsilon \leq 0)$	$K_{\rm can}~(\varepsilon>0)$	$K_{ m shi}^{\pm}~(arepsilon=0)$	$K_{ m shi}^+$ ($arepsilon eq$ 0)	$K_{ m shi}^-$ ($arepsilon eq$ 0)
$w = w_0$,SR	,SR	$V ightarrow -\infty$	$\langle V angle < 0$,SR
<i>w</i> = 0	$n_s \ge 1$	$w ightarrow w_0$?	$V ightarrow -\infty$	$\langle V angle < 0$	$\langle V angle < 0$

Conclusion: Inflation not feasible in the bare Polonyi model. Need radiative corrections!

[Ovrut & Steinhardt '83]

Kai Schmitz (MPIK Heidelberg)

Dynamical SUSY breaking in the IYIT model

[Izawa & Yanagida '96] [Intriligator & Thomas '96]

IYIT model: Simplest vector-like model of dynamical SUSY breaking. Use to generate μ !

- Strongly coupled SU(2) SUSY gauge theory with 4 fundamental quark fields Ψⁱ.
- > At low energies, quantum moduli space of degenerate SUSY vacua, spanned by

$$M^{ij} \simeq rac{1}{4\pi} rac{1}{\Lambda} \left\langle \Psi^{i} \Psi^{j}
ight
angle, \qquad M^{ij} = -M^{ji}, \qquad \operatorname{Pf}\left(M^{ij}\right) \simeq rac{\Lambda^{2}}{16\pi^{2}}$$

6 gauge-invariant composite flat directions ("mesons") subject to deformed constraint.

Dynamical SUSY breaking in the IYIT model

[Izawa & Yanagida '96] [Intriligator & Thomas '96]

IYIT model: Simplest vector-like model of dynamical SUSY breaking. Use to generate μ !

- Strongly coupled SU(2) SUSY gauge theory with 4 fundamental quark fields Ψⁱ.
- > At low energies, quantum moduli space of degenerate SUSY vacua, spanned by

$$M^{ij} \simeq rac{1}{4\pi} rac{1}{\Lambda} \left\langle \Psi^{i} \Psi^{j}
ight
angle, \qquad M^{ij} = -M^{ji}, \qquad \mathrm{Pf}\left(M^{ij}
ight) \simeq rac{\Lambda^{2}}{16\pi^{2}}$$

▶ 6 gauge-invariant composite flat directions ("mesons") subject to deformed constraint.

Break SUSY by introducing appropriate tree-level couplings to 6 singlet fields Z_{ij} in W_{tree} :

$$W_{\rm IYIT}^{\rm tree} = rac{1}{4} \lambda_{ij}^{kl} Z_{kl} \Psi^{i} \Psi^{j} \quad
ightarrow \qquad W_{\rm IYIT}^{\rm eff} \simeq rac{1}{16\pi} \lambda_{ij}^{kl} \Lambda Z_{kl} M^{ij}$$

- Lifts the flat directions in moduli space. $Pf(M) \neq 0$ no longer compatible with V = 0.
- SUSY broken à la O'Raifeartaigh by nonvanishing singlet F-terms, $F_Z \sim \lambda \langle M \rangle \neq 0$.

Next: Perform some magic and derive the superpotential of hybrid inflation from W_{IYIT}^{eff} .

[Copeland, Liddle, Lyth, Stewart & Wands '94] [Dvali, Shafi & Schaefer '94] [Dimopoulos, Dvali & Rattazzi '97] [Izawa '98]

$$W_{\text{IYIT}}^{\text{eff}} \simeq \frac{1}{16\pi} \lambda_{ij}^{kl} \Lambda Z_{kl} M^{ij} \rightarrow \kappa_{\Phi} \Phi \left[v^2 - \frac{1}{2} \left(\Xi^0 \right)^2 - \frac{1}{2} \left(X^n \right)^2 \right] + m_0 \Sigma \Xi^0 + m_n S_n X^n + \cdots$$

1 Transform singlet and meson fields Z_{kl} and M^{ij} from SU(4) to SO(6) basis:

- ► Global *SU*(4) flavor symmetry if $\lambda_{ij}^{kl} = \lambda \delta_i^k \delta_j^l$. Antisymmetric tensors $Z_{kl}, M^{ij} \sim \mathbf{6}$ of *SU*(4).
- ► $SU(4) \cong SO(6) \Rightarrow$ Switch to vectors $S_a, X^a \sim 6$ of $SO(6) \Rightarrow W_{IYIT}^{eff} \simeq \lambda_a/4\pi S_a X^a$.

[Copeland, Liddle, Lyth, Stewart & Wands '94] [Dvali, Shafi & Schaefer '94] [Dimopoulos, Dvali & Rattazzi '97] [Izawa '98]

$$W_{\text{IYIT}}^{\text{eff}} \simeq \frac{1}{16\pi} \lambda_{ij}^{kl} \wedge Z_{kl} M^{ij} \rightarrow \kappa_{\Phi} \Phi \left[v^2 - \frac{1}{2} \left(\Xi^0 \right)^2 - \frac{1}{2} \left(X^n \right)^2 \right] + m_0 \Sigma \Xi^0 + m_n S_n X^n + \cdots$$

1 Transform singlet and meson fields Z_{kl} and M^{ij} from SU(4) to SO(6) basis:

- Global SU(4) flavor symmetry if $\lambda_{ij}^{kl} = \lambda \delta_i^k \delta_j^l$. Antisymmetric tensors $Z_{kl}, M^{ij} \sim \mathbf{6}$ of SU(4).
- ► $SU(4) \cong SO(6) \Rightarrow$ Switch to vectors $S_a, X^a \sim 6$ of $SO(6) \Rightarrow W_{IYIT}^{eff} \simeq \lambda_a/4\pi S_a X^a$.

2 Include deformed moduli constraint using a Lagrange multiplier field *T*:

$$W_{\mathrm{eff}}^{\mathrm{dyn}} \simeq 4\pi T \left[\mathrm{Pf}\left(M^{ij}
ight) - \Lambda^2 / 16\pi^2 \right], \quad \mathrm{Pf}\left(M^{ij}
ight) = \frac{1}{2} \left(X^a
ight)^2$$

[Copeland, Liddle, Lyth, Stewart & Wands '94] [Dvali, Shafi & Schaefer '94] [Dimopoulos, Dvali & Rattazzi '97] [Izawa '98]

$$W_{\text{IYIT}}^{\text{eff}} \simeq \frac{1}{16\pi} \lambda_{ij}^{kl} \wedge Z_{kl} M^{ij} \rightarrow \kappa_{\Phi} \Phi \left[v^2 - \frac{1}{2} \left(\Xi^0 \right)^2 - \frac{1}{2} \left(X^n \right)^2 \right] + m_0 \Sigma \Xi^0 + m_n S_n X^n + \cdots$$

1 Transform singlet and meson fields Z_{kl} and M^{ij} from SU(4) to SO(6) basis:

- Global SU(4) flavor symmetry if $\lambda_{ij}^{kl} = \lambda \delta_i^k \delta_j^l$. Antisymmetric tensors $Z_{kl}, M^{ij} \sim \mathbf{6}$ of SU(4).
- ► $SU(4) \cong SO(6) \Rightarrow$ Switch to vectors $S_a, X^a \sim 6$ of $SO(6) \Rightarrow W_{IYIT}^{eff} \simeq \lambda_a/4\pi S_a X^a$.

2 Include deformed moduli constraint using a Lagrange multiplier field *T*:

$$W_{\mathrm{eff}}^{\mathrm{dyn}} \simeq 4\pi T \left[\mathrm{Pf}\left(M^{ij}
ight) - \Lambda^2 / 16\pi^2
ight], \quad \mathrm{Pf}\left(M^{ij}
ight) = \frac{1}{2} \left(X^a
ight)^2$$

6 Determine SUSY-breaking vacuum and shift the X^0 meson by its VEV (assume w.l.o.g. $\lambda_0 \leq \lambda_n$):

$$X^{0} = \langle X^{0} \rangle + \Xi^{0}, \quad \langle X^{0} \rangle = f(\lambda) \Lambda/4\pi, \quad \langle T \rangle = g(\lambda) \langle S_{0} \rangle$$

[Copeland, Liddle, Lyth, Stewart & Wands '94] [Dvali, Shafi & Schaefer '94] [Dimopoulos, Dvali & Rattazzi '97] [Izawa '98]

$$W_{\text{IYIT}}^{\text{eff}} \simeq \frac{1}{16\pi} \lambda_{ij}^{kl} \wedge Z_{kl} M^{ij} \rightarrow \kappa_{\Phi} \Phi \left[v^2 - \frac{1}{2} \left(\Xi^0 \right)^2 - \frac{1}{2} \left(X^n \right)^2 \right] + m_0 \Sigma \Xi^0 + m_n S_n X^n + \cdots$$

1 Transform singlet and meson fields Z_{kl} and M^{ij} from SU(4) to SO(6) basis:

- ► Global SU(4) flavor symmetry if $\lambda_{ij}^{kl} = \lambda \delta_i^k \delta_j^l$. Antisymmetric tensors $Z_{kl}, M^{ij} \sim \mathbf{6}$ of SU(4).
- ► $SU(4) \cong SO(6) \Rightarrow$ Switch to vectors $S_a, X^a \sim 6$ of $SO(6) \Rightarrow W_{IYIT}^{eff} \simeq \lambda_a/4\pi S_a X^a$.

2 Include deformed moduli constraint using a Lagrange multiplier field *T*:

$$W_{\mathrm{eff}}^{\mathrm{dyn}} \simeq 4\pi T \left[\mathrm{Pf}\left(M^{ij}
ight) - \Lambda^2 / 16\pi^2 \right], \quad \mathrm{Pf}\left(M^{ij}
ight) = \frac{1}{2} \left(X^a
ight)^2$$

6 Determine SUSY-breaking vacuum and shift the X^0 meson by its VEV (assume w.l.o.g. $\lambda_0 \leq \lambda_n$):

$$X^{0} = \langle X^{0} \rangle + \Xi^{0}, \quad \langle X^{0} \rangle = f(\lambda) \Lambda/4\pi, \quad \langle T \rangle = g(\lambda) \langle S_{0} \rangle$$

O Diagonalize the mass matrix of the SUSY-breaking fields S_0 and T:

$$(\Phi \Sigma)^T = R(\beta) \cdot (S_0 T)^T$$
, $\tan \beta = g(\lambda)$

 $v \sim \Lambda/4\pi$, $\kappa_{\Phi} \sim \lambda_0$, $m_0 = m/\sin\beta$, $m = \kappa_{\Phi}v = \lambda_0/4\pi$ Λ , $m_n = \lambda_n/4\pi$ Λ

Low-energy effective theory

$$W_{\rm IYIT}^{\rm eff} \simeq \kappa_{\Phi} \Phi \left[v^2 - \frac{1}{2} \left(\Xi^0 \right)^2 - \frac{1}{2} \left(X^n \right)^2 \right] + m_0 \Sigma \Xi^0 + m_n S_n X^n + \cdots$$

- Polonyi field Φ : linear combination of the IYIT singlet S_0 & the Lagrange multiplier T.
- Mesons Ξ^0 , X^n : SO(6) multiplet of would-be waterfall fields with masses m_0 , m_n .
- $m_a \ge m = \kappa_{\Phi} v \Rightarrow$ Keep vacuum energy density after inflation! \Rightarrow No top. defects!

Low-energy effective theory below the meson mass thresholds $m_a \sim \Lambda$:

$$W^{\rm eff}_{\rm IYIT} \simeq \mu^2 \Phi ~, \qquad \mu = \kappa_{\Phi}^{1/2} \nu \sim \lambda^{1/2} / 4\pi \Lambda$$

Dynamical UV completion of half the Polonyi model!

- Complex Polonyi scalar $\phi \subset \Phi$: flat tree-level direction in global SUSY.
- Dynamically generated SUSY-breaking scale: $\mu \sim \lambda^{1/2}/4\pi \Lambda$.

However: Now Φ couples to massive matter fields \Rightarrow Radiative corrections!

	A DUZ THAT HAR NO.
Kai Schmitz I	MPIK Heidelberg)

Radiative corrections from massive meson loops

$$V_{1-\text{loop}}(\varphi) = \begin{cases} \frac{1}{2} m_{\text{eff}}^2 \varphi^2 & ; & \varphi \ll \varphi_c \\ \frac{6 m^4}{16 \pi^2} \ln \varphi / \varphi_c & ; & \varphi \gg \varphi_c \end{cases} \quad \text{(effective mass around the origin)}$$

- ϕ stabilized around the origin by strong dynamics: $m_{\text{eff}}^2 \sim N_{\text{eff}} (\lambda_n) \frac{\kappa_{\Phi}^2}{16\pi^2} m^2$. [Chacko, Luty & Ponton '98]
- ▶ Harmless confinement transition at $\phi \sim \phi_c$: quark/gluons → mesons, $SU(2) \rightarrow \mathbb{1}$.

Kai Schmitz (MPIK Heidelberg)

Embedding into supergravity

Canonical Kähler potential plus subdominant higher-dimensionful corrections:

$$K = \Phi^{\dagger} \Phi + \frac{\varepsilon}{4} \left(\Phi^{\dagger} \Phi \right)^2 + \cdots$$

- $|\Phi|^4$ not forbidden by any symmetry. Expected in low-energy EFT of quantum gravity.
- ▶ Introduces Hubble-induced mass: $m_{\varphi}^2 = -3 \varepsilon H^2$ (accidental cancellation if $\varepsilon = 0$).

• Coefficient ε needs to be slightly suppressed to avoid the η problem in SUGRA. [Dine, Fischler, Nemeschansky '84] [Coughlan, Holman, Ramond, Ross '84]

Embedding into supergravity

Canonical Kähler potential plus subdominant higher-dimensionful corrections:

$$K = \Phi^{\dagger} \Phi + \frac{\varepsilon}{4} \left(\Phi^{\dagger} \Phi \right)^2 + \cdots$$

- $|\Phi|^4$ not forbidden by any symmetry. Expected in low-energy EFT of quantum gravity.
- Introduces Hubble-induced mass: $m_{\varphi}^2 = -3 \varepsilon H^2$ (accidental cancellation if $\varepsilon = 0$).
- Coefficient ε needs to be slightly suppressed to avoid the η problem in SUGRA. [Dine, Fischler, Nemeschansky '84] [Coughlan, Holman, Ramond, Ross '84]

Total scalar potential for the real Polonyi field ϕ in the large-field regime:

$$V(\varphi) = \mu^4 \left[1 - \frac{\varepsilon}{2} \left(\frac{\varphi}{M_{\rm Pl}} \right)^2 + \frac{1}{8} \left(1 - \frac{7\varepsilon}{2} + \frac{8\varepsilon^2}{3} \right) \left(\frac{\varphi}{M_{\rm Pl}} \right)^4 + \cdots \right] + \frac{6\,m^4}{16\pi^2} \ln \frac{\varphi}{\varphi_c}$$

- Same potential as in FHI: incl. SUGRA and loop corrections, in the limit $m_{3/2} = 0$. [Bastero-Gil, King, Shafi '07]
- No tadpole term (no odd powers), no dependence on the complex phase $\theta = \arg \phi$. [Buchmüller, Covi & Delpine '00]
- ▶ Usual slow-roll bound $m_{3/2} \lesssim 10^{-3} H$ does not apply. In fact, $m_{3/2} \simeq H$ in our case. [Buchmüller, Domcke, Kamada & K.S. ¹14]
- ► No waterfall transition, no production of topological defects at the end of inflation.

Dynamical realization of F-term hybrid inflation minus all its shortcomings!

Outline

Dynamical Inflation in the IYIT Supersymmetry Breaking Model

2 Spontaneous *R* Symmetry Breaking after the End of Inflation

3 Phenomenological Implications

4 Conclusions and outlook

Gaugino condensation in a mass-deformed hidden sector

Simplest possibility for *R*: GC in a strongly coupled pure SYM theory. Use to generate *w*! [Veneziano & Yankielowicz '82]

Introduce separate SQCD sector with field-dependent quark masses:

$$W_R = P Q^i \bar{Q}^i$$

- ► $\langle P \rangle = 0$: $SU(N_c)$ gauge theory with N_f massless flavors and quantum moduli space.
- ► $\langle P \rangle \gtrsim \tilde{\Lambda}$: Integrate out heavy quarks \Rightarrow Pure SYM \Rightarrow Gaugino condensation.
- Obtain gaugino condensation scale A
 [˜]_{eff} from RGE matching at mass threshold (P),

$$W_{R}^{\text{eff}} = \frac{N_{c}}{16\pi^{2}} \tilde{\Lambda}_{\text{eff}}^{3}, \qquad \tilde{\Lambda}_{\text{eff}}^{3N_{c}} = \langle P \rangle^{N_{f}} \tilde{\Lambda}^{3N_{c}-N_{f}}, \qquad \tilde{\Lambda} = M_{\text{Pl}} \exp\left[-\frac{8\pi^{2}}{b} \frac{1}{\tilde{g}^{2}(M_{\text{Pl}})}\right]$$

Gaugino condensation in a mass-deformed hidden sector

Simplest possibility for A: GC in a strongly coupled pure SYM theory. Use to generate w! [Veneziano & Yankielowicz '82]

Introduce separate SQCD sector with field-dependent quark masses:

$$W_R = P Q^i \bar{Q}^i$$

- ► $\langle P \rangle = 0$: $SU(N_c)$ gauge theory with N_f massless flavors and quantum moduli space.
- ► $\langle P \rangle \gtrsim \tilde{\Lambda}$: Integrate out heavy quarks \Rightarrow Pure SYM \Rightarrow Gaugino condensation.
- ▶ Obtain gaugino condensation scale Ã_{eff} from RGE matching at mass threshold ⟨P⟩,

$$W_{R}^{\mathrm{eff}} = rac{N_{c}}{16\pi^{2}} \,\tilde{\Lambda}_{\mathrm{eff}}^{3}, \qquad \tilde{\Lambda}_{\mathrm{eff}}^{3N_{c}} = \langle P
angle^{N_{f}} \,\tilde{\Lambda}^{3N_{c}-N_{f}}, \qquad \tilde{\Lambda} = M_{\mathrm{Pl}} \exp\left[-rac{8\pi^{2}}{b} rac{1}{\tilde{g}^{2}\left(M_{\mathrm{Pl}}
ight)}
ight]$$

Constant term in the superpotential:

$$w = \frac{N_c}{16\pi^2} \langle P \rangle^{N_f/N_c} \, \tilde{\Lambda}^{3-N_f/N_c}$$

- ► $U(1)_R \rightarrow Z^R_{2N_c}$ by $SU(N_c)$ instantons in SYM. $Z^R_{2N_c} \rightarrow Z^R_2$ by gaugino condensation.
- Simplest realization (consistent with Z_4^R): $N_c = N_f = 2$ (same as in the IYIT sector).
- w controlled by $\tilde{g}(M_{\text{Pl}})$. CC problem deferred to boundary conditions in the UV.

Waterfall transition at small inflaton field values

How to use this mechanism of R symmetry breaking in the context of Polonyi inflation?

- The field *P* is stabilized during inflation by its Hubble-induced mass, $m_p^2 \propto H^2$.
- Why unstable at small field values? Introduce waterfall superpotential for the field P,

$$W_P = lpha Y \left(v_P^2 - \frac{1}{2} P^2
ight) + \frac{\beta}{6} Y^3 + \cdots$$

- α , β dimensionless coefficients; v_P mass scale, maybe also of dynamical origin.
- ► Z_2 parity: [Y] = +1, [P] = -1. Assume suppressed parity-breaking operators.

Waterfall transition at small inflaton field values

How to use this mechanism of R symmetry breaking in the context of Polonyi inflation?

- The field *P* is stabilized during inflation by its Hubble-induced mass, $m_p^2 \propto H^2$.
- Why unstable at small field values? Introduce waterfall superpotential for the field P,

$$W_P = lpha Y \left(v_P^2 - \frac{1}{2} P^2
ight) + \frac{\beta}{6} Y^3 + \cdots$$

- α , β dimensionless coefficients; v_P mass scale, maybe also of dynamical origin.
- ► Z_2 parity: [Y] = +1, [P] = -1. Assume suppressed parity-breaking operators.

Mass eigenstates in global supersymmetry:

$$m_{p^{\pm}}^2 = \pm \, \alpha^2 \, v_P^2 \,, \qquad m_{y^{\pm}}^2 = \pm \, \alpha \beta \, v_P^2$$

• Choose α such that $-\alpha^2 v_P^2$ exceeds the Hubble-induced mass only after inflation.

If α too small / large, inflation never ends / never takes place. \Rightarrow Anthropic selection?

Our novel approach: Waterfall transition in a separate sector. \Rightarrow Control over t_R !

(De)stabilization of the waterfall field P

Total mass of the waterfall scalar p^- in supergravity:

$$m_{\rho^{-}}^{2}(\varphi) = -\alpha^{2}v_{P}^{2} + \frac{V(\varphi)}{M_{\rm Pl}^{2}} + \Delta m^{2}(\varphi)$$

• Choose $\alpha \simeq \mu^2 / v_P / M_{\text{Pl}}$, so that p^- becomes unstable close to $\varphi = 0$.

> During inflation, additional stabilization similarly as in standard F-term hybrid inflation,

$$\langle Y \rangle = \frac{|F_Y|}{m_{y^+}^2} \frac{\mu^2 \varphi}{\sqrt{2} M_{\text{Pl}}^2}, \qquad |F_Y| = \alpha v_P^2, \qquad \Delta m^2(\varphi) \supset \alpha \langle Y \rangle$$

Size and gradient of $m_{\rho^-}^2(\varphi)$ as a function of φ sensitive to noncanonical Kähler potential,

$$K_{\text{mix}} = \varepsilon_{P} \frac{|\Phi|^{2} |P|^{2}}{M_{*}^{2}}, \qquad \frac{V(\varphi)}{M_{\text{Pl}}^{2}} \rightarrow \left(1 - \varepsilon_{P} \frac{M_{\text{Pl}}^{2}}{M_{*}^{2}}\right) \frac{V(\varphi)}{M_{\text{Pl}}^{2}}$$

Only means of communication between the SUSY and R symmetry-breaking sectors.

- Arrange parameters such that $|m_{p^-}| \gtrsim H$ before and after the waterfall transition.

Induced R symmetry-breaking phase transition at late times as a pure SUGRA effect!

Tuning the cosmological constant to zero

SUSY-breaking sector:

$$W \simeq \mu^2 \Phi$$

R symmetry-breaking sector:

$$W \simeq rac{1}{8\pi^2} \langle P
angle ilde{\Lambda}^2$$

Required constant in the superpotential:

Actual constant in the superpotential:

$$w_0 \simeq rac{\mu^2 M_{
m Pl}}{\sqrt{3}}$$
 $w \simeq rac{1}{8\pi^2} rac{6\sqrt{2}}{7} v_P \, \tilde{\Lambda}^2$

Match these results by tuning the dynamical scale $\tilde{\Lambda}$ in the *R* symmetry-breaking sector:

$$w
ightarrow w_0 \quad \Rightarrow \quad \tilde{\Lambda}
ightarrow \left(rac{8\pi^2}{\sqrt{3}} rac{7}{6\sqrt{2}} rac{\mu^2 M_{
m Pl}}{v_{
m P}}
ight)^{1/2}$$

Then, late-time R symmetry breaking after inflation resulting in CC = 0!

Kai Schmitz (MPIK Heidelberg)

Outline

- Dynamical Inflation in the IYIT Supersymmetry Breaking Model
- 2 Spontaneous *R* Symmetry Breaking after the End of Inflation
- 3 Phenomenological Implications
- 4 Conclusions and outlook

Properties of the scalar potential driving inflation

$$V(\varphi) = \mu^{4} \left[1 - \frac{\varepsilon}{2} \left(\frac{\varphi}{M_{\text{Pl}}} \right)^{2} + \frac{1}{8} \left(1 - \frac{7\varepsilon}{2} + \frac{8\varepsilon^{2}}{3} \right) \left(\frac{\varphi}{M_{\text{Pl}}} \right)^{4} + \cdots \right] + \frac{6m^{4}}{16\pi^{2}} \ln \frac{\varphi}{\varphi_{c}}$$

Inflection point at:

$$\varphi_{\mathrm{flex}} \sim \varepsilon^{1/2} M_{\mathrm{Pl}}, \quad V''(\varphi_{\mathrm{flex}}) = 0$$

Turns into saddle point for $\varepsilon = \varepsilon_0$:

$$\varepsilon_{0} = \varepsilon_{0}\left(\lambda\right), \qquad V'\left(\varphi_{\mathrm{flex}}\right) = 0$$

- ε > ε₀: Hill-top regime ⇒ fine-tuned initial conditions or inflaton stuck in false vacuum.
- $\varepsilon < \varepsilon_0$: Inflection-point regime

Expectation: $\varepsilon \sim \varepsilon_0$ maximizes # of *e*-folds. $\varepsilon < \varepsilon_0$ consistent with $\varphi_{ini} \sim M_{Pl}$. $\Rightarrow \varepsilon \lesssim \varepsilon_0$

Our set-up: log corrections, near-canonical K ($\varepsilon \leq \varepsilon_0$), constant w = 0 during inflation.

Inflationary CMB observables

Dynamical scale $\Lambda \sim 10^{16}\,\text{GeV}$

Gravitino mass $m_{3/2} \sim 10^{12} \, {\rm GeV}$

A_s^{obs} ≃ 2 × 10⁻⁹ and n_s^{obs} ≃ 0.968 for natural parameter values: λ ≃ 2 and ε ≃ 0.2.
 Similarity / equivalence of scales: Λ ~ Λ_{GUT} and H ≃ m_{3/2}. ⇒ r ~ 10⁻⁵ ··· 10⁻⁴.

Kai Schmitz (MPIK Heidelberg)

Dark matter, baryogenesis and electroweak vacuum stability

Thermally produced winos with a fine-tuned mass as dark matter:

- Pure gravity mediation: anomaly-mediated gaugino masses $m_{3/2}/16\pi^2 \sim 10^{10} \, {\rm GeV}$. [Dine & MacIntire '92] [Giudice, Luty, Murayama & Rattazzi '98] [Randall & Sundrum '99] [Bagger, Moroi & Poppiz '00]
- ▶ LSP (wino) overproduction during reheating: $\Phi \rightarrow \psi_{3/2} \psi_{3/2} \rightarrow \cdots \rightarrow LSP$. [Moroi & Randall '00] [Kawasaki, Takahashi & Yanagida '06] [Buchmüller, Domcke & K.S. '12]
- Assume anthropic selection of a fine-tuned wino mass. AMSB + Higgsino loops: [Ibe, Matsumoto & Yanagida '12] [Hall, Nomura & Shirai '13]

$$M_{\rm wino} \sim 3 \,{\rm TeV}$$

- Nonthermal relics reach thermal equilibrium. Simple solution to the Polonyi problem!
- Our prediction: neutral/charged winos only sparticles at low energies (detectable!).

Dark matter, baryogenesis and electroweak vacuum stability

Thermally produced winos with a fine-tuned mass as dark matter:

- > Pure gravity mediation: anomaly-mediated gaugino masses $m_{3/2}/16\pi^2 \sim 10^{10} \, {\rm GeV}$. [Dine & MacIntire '92] [Giudice, Luty, Murayama & Rattazzi '98] [Randall & Sundrum '99] [Bagger, Morol & Popplz '00]
- ▶ LSP (wino) overproduction during reheating: $\Phi \rightarrow \psi_{3/2} \psi_{3/2} \rightarrow \cdots \rightarrow LSP$. [Moroi & Randall '00] [Kawasaki, Takahashi & Yanagida '06] [Buchmüller, Domcke & K.S. '12]
- Assume anthropic selection of a fine-tuned wino mass. AMSB + Higgsino loops: [Ibe, Matsumoto & Yanagida '12] [Hall, Nomura & Shirai '13]

$$M_{\rm wino} \sim 3\,{
m TeV}$$

- Nonthermal relics reach thermal equilibrium. Simple solution to the Polonyi problem!
- Our prediction: neutral/charged winos only sparticles at low energies (detectable!).

Reheating via gravitino decay:

- Polonyi inflation is followed by a phase of gravitino domination (nonrelativistic matter). [Jeong & Takahashi '13]
- ▶ Reheating temperature not a free parameter, but fixed by $m_{3/2} = m_{3/2} (A_s^{obs})$,

$$T_{\rm rh} \simeq 0.4 \sqrt{\Gamma_{3/2} M_{\rm Pl}} \sim 10^8 \,{\rm GeV}\,, \qquad \Gamma_{3/2} = \frac{193}{384\pi} \frac{m_{3/2}^2}{M_{\rm Pl}^2}$$

Thermal leptogenesis plus moderate resonance effects or nonthermal leptogenesis. [Fukugita & Yanagida '86] (Pilaftsis '97; Pilaftsis & Underwood '04] [Lazarides & O. Shafi '91]

Dark matter, baryogenesis and electroweak vacuum stability

Thermally produced winos with a fine-tuned mass as dark matter:

- > Pure gravity mediation: anomaly-mediated gaugino masses $m_{3/2}/16\pi^2 \sim 10^{10} \, {\rm GeV}$. [Dine & MacIntire '92] [Giudice, Luty, Murayama & Rattazzi '98] [Randall & Sundrum '99] [Bagger, Morol & Poppiz '00]
- ▶ LSP (wino) overproduction during reheating: $\Phi \rightarrow \psi_{3/2} \psi_{3/2} \rightarrow \cdots \rightarrow LSP$. [Moroi & Randall '00] [Kawasaki, Takahashi & Yanagida '06] [Buchmüller, Domcke & K.S. '12]
- Assume anthropic selection of a fine-tuned wino mass. AMSB + Higgsino loops: [Ibe, Matsumoto & Yanagida '12] [Hall, Nomura & Shirai '13]

$$M_{\rm wino} \sim 3\,{
m TeV}$$

- Nonthermal relics reach thermal equilibrium. Simple solution to the Polonyi problem!
- Our prediction: neutral/charged winos only sparticles at low energies (detectable!).

Reheating via gravitino decay:

- Polonyi inflation is followed by a phase of gravitino domination (nonrelativistic matter). [Jeong & Takahashi '13]
- Reheating temperature not a free parameter, but fixed by $m_{3/2} = m_{3/2} (A_s^{obs})$,

$$T_{\rm rh} \simeq 0.4 \sqrt{\Gamma_{3/2} M_{\rm Pl}} \sim 10^8 \,{\rm GeV}\,, \qquad \Gamma_{3/2} = \frac{193}{384\pi} \frac{m_{3/2}^3}{M_{\rm Pl}^2}$$

Thermal leptogenesis plus moderate resonance effects or nonthermal leptogenesis. [Fukugita & Yanagida '86] [Pilaftsis '97; Pilaftsis & Underwood '04] [Lazarides & O. Shafi '91]

Vacuum stability: SUSY prevents $\lambda_h < 0$ as long as $m_{soft} \lesssim 10^{12 \cdots 13}$ GeV. Coincidence!?

Outline

- Dynamical Inflation in the IYIT Supersymmetry Breaking Model
- 2 Spontaneous R Symmetry Breaking after the End of Inflation
- 3 Phenomenological Implications
- 4 Conclusions and outlook

Observation: High-scale SUSY offers the possibility to unify SUSY breaking and inflation!

Expansion driven by Λ_{SUSY}^4 , pseudoflat Polonyi direction acts as the inflaton field.

Observation: High-scale SUSY offers the possibility to unify SUSY breaking and inflation!

Expansion driven by Λ_{SUSY}^4 , pseudoflat Polonyi direction acts as the inflaton field.

Our approach: *R* symmetry breaking at late times to tame dangerous SUGRA corrections.

► Habitable universes with CC = 0 & SUSY undergo inflation. Answer to Why inflation?

Observation: High-scale SUSY offers the possibility to unify SUSY breaking and inflation!

Expansion driven by Λ_{SUSY}^4 , pseudoflat Polonyi direction acts as the inflaton field.

Our approach: R symmetry breaking at late times to tame dangerous SUGRA corrections.

► Habitable universes with CC = 0 & SUSY undergo inflation. Answer to Why inflation?

Implications: Polonyi inflation, similar to F-term hybrid inflation in the limit $m_{3/2} = 0$.

► No tadpole term in the inflaton potential, no topological defects, no bound on m_{3/2}.

$$H \simeq m_{3/2} \Rightarrow m_{3/2} \simeq \frac{\pi}{\sqrt{2}} \sqrt{r A_s^{\text{obs}}} \sim 10^{12} \,\text{GeV} \left(\frac{r}{10^{-4}}\right)^{1/2}$$

Suppose anthropic selection of A_s^{obs} . \Rightarrow Explanation for large SUSY-breaking scale.

▶ Wino LSP (DM, only sparticles at low energies), leptogenesis, EW vacuum stability.

Observation: High-scale SUSY offers the possibility to unify SUSY breaking and inflation!

Expansion driven by Λ_{SUSY}^4 , pseudoflat Polonyi direction acts as the inflaton field.

Our approach: *R* symmetry breaking at late times to tame dangerous SUGRA corrections.

► Habitable universes with CC = 0 & SUSY undergo inflation. Answer to Why inflation?

Implications: Polonyi inflation, similar to F-term hybrid inflation in the limit $m_{3/2} = 0$.

► No tadpole term in the inflaton potential, no topological defects, no bound on m_{3/2}.

$$H \simeq m_{3/2} \Rightarrow m_{3/2} \simeq \frac{\pi}{\sqrt{2}} \sqrt{r A_s^{\text{obs}}} \sim 10^{12} \,\text{GeV} \left(\frac{r}{10^{-4}}\right)^{1/2}$$

Suppose anthropic selection of A_s^{obs} . \Rightarrow Explanation for large SUSY-breaking scale.

▶ Wino LSP (DM, only sparticles at low energies), leptogenesis, EW vacuum stability.

Next steps: Seek alternative UV completions of the Polonyi model, $W = \mu^2 \Phi + w$. More comprehensive study of reheating and low-energy phenomenology. \Rightarrow Lots of work to do!

Thank you for your attention!