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http://bicepkeck.org/visuals.html

T ~ eVT ~ MeV

[Cooke et al. (2013)]

[Ade et al. (2015)]
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The existence of dark matter?

● We have evidences only at large scales (and only 
gravitationally)
– Rotation curves of spiral galaxies

– Gravitational lensing

– Cosmic Microwave Background

– Large Scale Structures simulation

– Collision of bullet cluster

Dark matter: 26.8%

Baryonic matter: 4.9%

Dark energy: 68.3%



  

The existence of dark matter?

● We have evidences only at large scales (and only 
gravitationally)
– Rotation curves of spiral galaxies

– Gravitational lensing

– Cosmic Microwave Background

– Large Scale Structures simulation

– Collision of bullet cluster

So far there is no definite evidence of dark matter through 
particle physics interactions and this might as well be so 

Dark matter: 26.8%

Baryonic matter: 4.9%

Dark energy: 68.3%



  

Dark matter particle properties?

● If true, all the experiments designed to detect them in such 
a way will give ... 



  

Dark matter particle properties?

● Okay let's be more optimistic :) 

SMDM

● Three possible ways to detect Dark Matter (DM) 
particle properties (mass & interactions):
• Direct detection: wait for them to hit our detectors
• Indirect detection: if they annihilation or decay to 

something detectable - the Standard Model (SM) 
particles

• Collider: missing energy/momentum



  

What we know about dark matter?

● They are nonrelativistic, collisionless(?) matter
● Color and electric charged neutral
● They are stable on cosmological timescale
● Motivated from what we know about the SM:

– DM can be non self-conjugate (particles ≠ antiparticles): few-
decade-old idea e.g. [Nussinov (1985)] i.e. Asymmetric DM; 
Recently gain renew impetus, see some recent reviews: 
[Davoudiasl & Mohapatra (2012)], [Petraki & Volkas (2013)], [Zurek (2014)]
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– DM can be charged under the same (approximate) 
symmetries of the SM: baryon and/or lepton number see 
e.g. [Kaplan, Luty & Zurek (2009)]; as gauge symmetry [Fileviez Perez 
& Wise (2010)], [Duerr, Fileviez Perez & Wise (2013)], [Duerr & Fileviez 
Perez (2014)]



  

What we know about dark matter?

● They are nonrelativistic, collisionless(?) matter
● Color and electric charged neutral
● They are stable on cosmological timescale
● Motivated from what we know about the SM:

– DM can be non self-conjugate (particles ≠ antiparticles): few-
decade-old idea e.g. [Nussinov (1985)] i.e. Asymmetric DM; 
Recently gain renew impetus, see some recent reviews: 
[Davoudiasl & Mohapatra (2012)], [Petraki & Volkas (2013)], [Zurek (2014)]

– DM can be charged under the same (approximate) 
symmetries of the SM: baryon and/or lepton number see 
e.g. [Kaplan, Luty & Zurek (2009)]; as gauge symmetry [Fileviez Perez 
& Wise (2010)], [Duerr, Fileviez Perez & Wise (2013)], [Duerr & Fileviez 
Perez (2014)]

Another hint: ΩDM≈5ΩB



  

Asymmetric dark matter

● Motivation?  ΩDM≈5ΩB=> Y∆DMmDM≈5mnY∆B

– Chemical Equilibrium (CE) could =>  n∆DM≈n∆B => mDM≈5mn 

 →simply replacing one coincidence with another but see e.g. 
dark QCD [Bai & Schwaller (2014)]

– In fact CE => μDM≈μB, and if decoupling happens when 
nonrelativisitic => mDM >>mn

● Maximally asymmetric DM requires fast DM-DM annihilation to 
annihilate the symmetric component 

=> unitarity bound [Griest & Kamionkowski (1990)], [Hui (2001)]

 mDM <~100 TeV

● Mixed scenario is less predictive but as interesting e.g. [Graesser, 

Shoemaker & Vecchi (2011)] 



  

Symmetries and Asymmetries



  

Symmetries and asymmetries

● SymmetrySymmetry is a double-edged sword: it prevents the 
generation of an asymmetry; it also protects an existing 
asymmetry from being erased



  

Symmetries and asymmetries

● SymmetrySymmetry is a double-edged sword: it prevents the 
generation of an asymmetry; it also protects an existing 
asymmetry from being erased

● A slightly broken symmetrysymmetry allows the creation and 
destruction of an asymmetry

image credit: https://swedishgarden.wordpress.com/2011/12/10/double-edged-
sword-rebellion/



  

Early Universe effective theories 

For the range of temperatures of interest T, three types of 
reactions according their timescale:

(i) Fast: Γ(T) >> H(T): absence of symmetry, in CE

(ii) Slow: Γ(T) << H(T): exact/effective symmetries 

     => conserved Noether's charges

(iii) Relevant: Γ(T) ~ H(T): quasi/approximate symmetries 

     => evolving Noether's charges described by 

non-equilibrium dynamics like Boltzmann equations

e.g. [CSF, Gonzalez-Garcia & Nardi (2011)]



  

Early Universe effective theories 

For the range of temperatures of interest T, three types of 
reactions according their timescale:

(i) Fast: Γ(T) >> H(T): absence of symmetry, in CE

(ii) Slow: Γ(T) << H(T): exact/effective symmetries 

     => conserved Noether's charges

(iii) Relevant: Γ(T) ~ H(T): quasi/approximate symmetries 

     => evolving Noether's charges described by 

non-equilibrium dynamics like Boltzmann equations

e.g. [CSF, Gonzalez-Garcia & Nardi (2011)]

Goal: Rewrite all the particle asymmetries in terms 
of only Noether's charges where the effects of (i) 
can be resummed [CSF (2016)]



  

U(1) symmetries and charges

● By symmetry, refer to U(1) symmetry which characterizes 
the charge asymmetry between particle & antiparticle (the 
diagonal generators of nonabelian group do not contribute)

● For each complex particle i (not real scalar or Majorana 
fermion), they can be assigned a chemical potential μi with 
charge qi

x under U(1)x

● For reactions of type (i), we have sets of linear equations 

● By construction, if U(1)x is a symmetry of the system

● Hence the most general solution is 

Constants 
to be 
solved later

Formalism first introduced in [Antaramian, Hall & Rasin (1994)]



  

Some thermodynamics ...

● Particle i in kinetic equilibrium follows FD/BE distribution 

● The number density is 

● The number density asymmetry is

● For each U(1)x, the corresponding Noether's charge 

 

Assumption: 
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Some thermodynamics 

● Particle i in kinetic equilibrium follows FD/BE distribution 

● The number density is 

● The number density asymmetry is

● For each U(1)x, the corresponding Noether's charge 

 

Assumption: 

Assumption: 

Constants can be solved in terms of the Noether's charge and  



  

Solutions

● The type (i) reactions are “resummed” in 

● The solutions in terms of only Noether's charge

 

● We can easily write down the baryon asymmetry
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Baryogenesis could work (nΔB≠0) if and only if there is 
some approximate symmetry U(1)x with nΔx≠0



  

Solutions

● The type (i) reactions are “resummed” in 

● The solutions in terms of only Noether's charge

 

● We can easily write down the baryon asymmetry

 

 

Baryogenesis could work (nΔB≠0) if and only if there is 
some approximate symmetry U(1)x with nΔx≠0

Detection of (“fast”) B violation does not Detection of (“fast”) B violation does not 
invalidate baryogensis (due to fast invalidate baryogensis (due to fast 
washout) but is a washout) but is a sourcesource of B violation of B violation 



  

The roles of U(1) symmetries

● To clarify the roles of U(1) symmetries, let us single out the 
exact symmetries U0={ U(1)a,U(1)b,...}  and denote the rest 
of them as U=U-U0={ U(1)m,U(1)n,...}. We can eliminate the 
U0 charges using the relations 

 

● The number density asymmetry is

Matrix with reduced dimension

Only nonexact symmetries



  

The roles of U(1) symmetries

● The baryon asymmetry is

Matrix with reduced dimension

Only nonexact symmetries
Direct contributions 

Indirect contributions
particles charged under 
U and carry B

particles charged under U0  and U but 
do not carry B e.g. Higgsogenesis 

Generalization of the result of [Antaramian, Hall & Rasin (1994)] which states 
that a nonzero asymmetry in a preserved sector U that has nonzero 
hypercharge U0 implies nonzero baryon asymmetry (a=b=Y).

[Servant & Tulin (2013)]



  

The roles of U(1) symmetries

U

U0

Preserver: type (ii) reactions with n∆m≠0

Creator/destroyer: type (iii) reactions; 

dynamical violation n∆m = 0 → n∆m≠0

Messenger: type (ii) reactions with 
conservation law e.g. n∆a=0

The lightest electrically neutral particle 
(if stable) can be dark matter

Baryons

Nonbaryons



  

Example: The SM

● Let us define the U(1)x-SU(N)-SU(N) mixed anomaly 
coefficient as

● We identify five U(1)'s: U(1)Y, U(1)B, U(1)Lα

fundamental adjoint

Identity all the U(1)'s 
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● We identify five U(1)'s: U(1)Y, U(1)B, U(1)Lα

● The last four are anomalous: AB22=ALα22 = Nf/2

fundamental adjoint

Type (i) reactions for T>100 GeV

Identity all the U(1)'s 



  

Example: The SM

● Let us define the U(1)x-SU(N)-SU(N) mixed anomaly 
coefficient as

● We identify five four U(1)'s: U(1)Y, U(1)B, U(1)Lα, U(1)(B-L)α

● The last four are anomalous: AB22=ALα22 = Nf/2

fundamental adjoint

Anomaly free

Type (i) reactions for T>100 GeV

Due to quark mixing, U(1)(B-L)α→U(1)B/3-Lα 

Identity all the U(1)'s 



  

Example: The SM

effective/quasi symmetries

exact symmetries

~ 1012 GeV

~ 100 GeV



  

Example: The SM

Define the vectors: 

At T ~ 10  GeV⁹ , 1st gen. Yukawa interactions are out of chemical eq.

Setting ye,yu,yd → 0, we gain U(1)e, U(1)u, U(1)d 

Solve the system: Calculate J 
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At T ~ 10  GeV⁹ , 1st gen. Yukawa interactions are out of chemical eq.

Setting ye,yu,yd → 0, we gain U(1)e, U(1)u, U(1)d 
U(1)-SU(3)-SU(3) anomaly!

● Formally, construct nΔe and set to zero (assuming initial nΔe=0);  in practice, set 
ge = 0.

Solve the system: Calculate J 



  

Example: The SM

Define the vectors: 

At T ~ 10  GeV⁹ , 1st gen. Yukawa interactions are out of chemical eq.

SM: NH = 1 

Setting ye,yu,yd → 0, we gain U(1)e, U(1)u, U(1)d 
U(1)-SU(3)-SU(3) anomaly!

● u and d are indistiguisable under SU(3) (enter the same way in QCD sphalerons), 
set Yu = Yd = 1/6.

● Formally, construct nΔe and set to zero (assuming initial nΔe=0);  in practice, set 
ge = 0.

Solve the system: Calculate J 



  

Another example: The SM

Define the vectors: 

● Example: assuming EW sphalerons decouple after EW phase 
transition i.e. consider the degrees of freedom in broken EW theory

● Consider all particles relativistic ξi = 1(2), Nf fermion generations and 
NH pairs of Higgs. 

Relate B to B-L 

Result of [Harvey & Turner (1990)] but simpler derivation and easy to extend or 
generalize i.e. to consider mass threshold effects with ξi [Inui et al. (1994)],
[Chung et al. (2008)]  



  

Another example: The SM

Define the vectors: 

● Example: assuming EW sphalerons decouple after EW phase 
transition i.e. consider the degrees of freedom in broken EW theory

● Consider all particles relativistic ξi = 1(2), Nf fermion generations and 
NH pairs of Higgs. 

Result of [Harvey & Turner (1990)] but simpler derivation and easy to extend or 
generalize i.e. to consider mass threshold effects with ξi [Inui et al. (1994)],
[Chung et al. (2008)]  

Relate B to B-L 



  

Intermission: some takeaways

● The use of symmetry formalism makes it clear from the 
outset that the asymmetries of all particles will depend only 
on the Noether's charges

● Type (i) reactions are implicitly taken into account without 
having to be referred to explicitly. Useful for more 
complicated models e.g. MSSM

● Type (ii) reactions → effective/exact symmetries: act as 
preserver or messenger 

● Type (iii) reactons → quasi symmetries: the only ones that 
need to be solved dynamically for quantitative results

● Detection of (“fast”) B violation does not invalidate 
baryogensis but will be a source of B violation and points 
to new U(1)'s as creator/preserver/messenger  



  

Shared Asymmetry Scenarios



  

Sharing
● DM is not self-conjugate: X and X (complex scalar or Dirac 

fermion)
● X carries baryon and/or lepton number and singlet under 

the SM gauge group (can be electric charged neutral 
component of some SU(2) multiplet)

● Being ignorant about how an initial asymmetry is 
generated but they are shared among the two sectors 
through effective operator of the type 

SMDM

p=1,2 for fermion, scalar

At T >> m
X
 

● X is stable

 



  

Sharing but not caring
● DM is not self-conjugate: X and X (complex scalar or Dirac 

fermion)
● X carries baryon and/or lepton number and singlet under 

the SM gauge group (can be electric charged neutral 
component of some SU(2) multiplet)

● Being ignorant about how an initial asymmetry is 
generated but they are shared among the two sectors 
through effective operator of the type 

SMDM

● X is stable

● The two sectors barely communicate

 

p=1,2 for fermion, scalar

At T << m
X
 (today)



  

The SM + X

effective/quasi symmetries

exact symmetries

~ 1012 GeV

~ 100 GeV X => U(1)
X



  

Some assumptions

● Assume XX annihilation is fast such that X is maximally 
asymmetric

– unitarity bound mX <~100 TeV  

– could give observable direct/detection signatures (model-
dependent)

● If X carries B, 2mX > mn to avoid fast nucleon decay

● For simplicity, we assume couplings with only 1st family SM 
fermions => no charged lepton flavor violation  

 



  

More assumptions

● Prior to the sharing, the B-L or B asymmetry is already 
fixed (by unspecified mechanism at higher scale) 
– B-L = B-L(X)+B-L(SM) 

= |YΔX|+(78/29)YΔB = (5mn/mX+78/29)YΔB 
obs

– B = B(X)+B(SM) 

= 1/2|YΔX|+YΔB = (5/2mn/mX+1)YΔB 
obs

● Assume the initial asymmetry either completely reside in 
the X or the SM sectors (irrelevant if the system achieve 
CE)



  

Possible SM operators
● Before EW sphalerons freeze out 

– The conserved charge is B/3-Lα 

– The lowest dim one is of dim-5 (unique):

 

B(X)=0, L(X)=1

[Weinberg (1979)], [Weinberg (1980)]



  

Possible SM operators
● After EW sphalerons freeze out

– The conserved charges are B and Lα 

– The lowest dim ones are of dim-6:

B(X)=1/2, L(X)=1/2  

[Weinberg (1979)], 
[Wilczek & Zee (1979)], 
[Abbott & Wise (1980)]

We also impose

Others are related by Fierz's reordering

for consistency



  

Analysis

● Assume EW phases transition happens when EW sphalerons 
freeze out

● We rewrite all the asymmetries in terms of Noether's charges 
and the Boltzmann equations for the sharing

● Once mX is fixed, we can solve for Λ which gives the correct 
sharing 

● With Λ determined, we can calculate the relevant signatures



  

Boltzmann equations

Before EW sphalerons freeze out

After EW sphalerons freeze out (mass threshold effects)

Temperature dependent



  

Complex scalar X

Λ<174 GeV

Y∆L = 0 Y∆L = -(51/28)Y∆B

XX(ql)
L
(du)

R

 XX(ll)LHH

Consider only CE solutions

Never achieve CE

YΔX(TEWsp)=2YBtot

●

ac
hie

ve
 C

E



  

Dirac fermion X

Λ<174 GeV

Y∆L = 0 Y∆L = -(51/28)Y∆B

XX(ql)
L
(du)

R

 XX(ll)LHH

Consider only CE solutions

Never achieve CE

YΔX(TEWsp)=2YBtot

●

ac
hie

ve
 C

E



  

Phenomenology



  

Collider signatures

● Need large center of mass energy > 2(mX + mW)

● No planned e-e- or e+e+ collider

 XX(ll)LHH=> e-e- → W- W- ν ν or conjugate process



  

Collider signatures

XX(ql)
L
(du)

R 
=> pp →j + missing; pp → j + e+ + missing 

 XX(ll)LHH=> e-e- → W- W- ν ν or conjugate process

● Need large center of mass energy > 2(mX + mW)

● No planned e-e- or e+e+ collider

● Both signatures are correlated

● pp → j + e- + missing very suppressed due to scarcity of antiquarks in 
the protons

● Due to the scaling at high energy E>>mX, σ~E2(5-p)/Λ2(6-p), can be quite 
relevant for the collider searches (compared to indirect/direct searches)

● Have to be careful about when effective operator description breaks 
down



  

Collider signatures at LHC8

XX(ql)
L
(du)

R 
=> pp →j + missing; pp → j + e+ + missing 

ATLAS monojet search

ATLAS estimated bound from monojet search cut on the quark ET; detail 
analysis considering UV model with monolepton search [work in progress])

EFT bound

EFT bound



  

Collider signatures at LHC13

XX(ql)
L
(du)

R 
=> pp →j + missing; pp → j + e+ + missing 

EFT bound

EFT bound



  

Indirect signatures

XX(ql)
L
(du)

R 
=> XX → e+ + hadrons ... 

 XX(ll)LHH => dominant one: XX →νν

Although there are only X or X today, we can still have XX or XX 
annihilation signatures (positrons, gamma rays, neutrinos ...)



  

Indirect signatures

XX(ql)
L
(du)

R 
=> XX → e+ + hadrons ... 

 XX(ll)LHH => dominant one: XX →νν

Although there are only X or X today, we can still have XX or XX 
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<σv>~10-32 cm3/s
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Still far from current experimental sensitivities



  

Indirect signatures

XX(ql)
L
(du)

R 
=> XX → e+ + hadrons ... 

 XX(ll)LHH => dominant one: XX →νν

Although there are only X or X today, we can still have XX or XX 
annihilation signatures (positrons, gamma rays, neutrinos ...)

<σv>~10-32 cm3/s

<σv>~10-30 cm3/s

<σv>~10-32 cm3/s

<σv>~10-30 cm3/s

Still far from current experimental sensitivities

See however [Fonseca, Necib & Thaler (2015)] which can accommodate Fermi 
GeV gamma ray excess. This framework cannot be captured by our EFT approach 
as the mediator mass ~ mX



  

Direct signatures
XX(ll)LHH => X + N →X + N + ν + ν  through Higgs exchange
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only leftover X(B=1/2) today, there is no signature!

Induced nucleon decay (IND)? [Davoudiasl et al. (2011)]



  

Direct signatures
XX(ll)LHH => X + N →X + N + ν + ν  through Higgs exchange

for mx = 400(500) GeV for X scalar (fermion)

=> Well within “neutrino floor” [Billard et al. (2014)]  

XX(ql)
L
(du)

R 
=> X + p → X + π

0 
+ e+ ; X + n → X + π

0 
+ ν   

Due to baryon number conservation, in shared asymmetry scenario,
only leftover X(B=1/2) today, there is no signature!

In [Davoudiasl et al. (2011)], hylogenesis generates equal in magnitude 
and opposite in sign asymmetry in the DM and SM sectors 
=> can have IND
=> sharing operators cannot be in CE to avoid asymmetry washout 

Induced nucleon decay (IND)? [Davoudiasl et al. (2011)]



  

Remarks

● That the DM and the SM share an asymmetry in early time is an 
interesting possibility

● Our EFT analysis 
– Asymmetry generation is complete prior to sharing

– Today the DM is maximally asymmetric, unitarity bound mX <~ 100 TeV

– No induced nucleon decay signature

– Due to steep energy dependence σ~E2(5-p)/Λ2(6-p), although indirect and 
direct signatures are suppressed, LHC is already probing this scenario 

 



  

Remarks

● That the DM and the SM share an asymmetry in early time is an 
interesting possibility

● Our EFT analysis 
– Asymmetry generation is complete prior to sharing

– Today the DM is maximally asymmetric: unitarity bound mX <~ 100 TeV

– No induced nucleon decay signature

– Due to steep energy dependence σ~E2(5-p)/Λ2(6-p), although indirect and 
direct signatures are suppressed, LHC is already probing this scenario 

● Caveat: EFT can fail at LHC energy and higher energy
● Resort to a UV model

– Asymmetry generation

– Reanalyze collider phenomenology 



  

Thank you for your attention



  

Extra slides



  

Example: The SM

effective/quasi symmetries

exact symmetries

~ 1012 GeV

~ 100 GeV
Leptogenesis [Fukugita & Yanagida (1986)]



  

Example: The SM

Define the vectors: 

At T ~ 10  GeV⁴ , all Yukawa interactions are in chemical eq.

SM: NH = 1 

Setting nΔY = 0, we obtain

Equivalently, we can use the second formalism by constructing 
reduced matrix of 3 x 3 J

Solve the system: Calculate J 



  

Another example: The SM

Define the vectors: 

● Assuming EW sphalerons decouple before EW phase transition 
(EWPT) i.e. consider the degrees of freedom in unbroken EW

● Consider all particles relativistic ξi = 1(2), Nf fermion generations 
and NH pairs of Higgs. 

Result of [Harvey & Turner (1990)] but simpler derivation and easy to extend or 
generalize i.e. to consider mass threshold effects with ξi [Inui et al. (1994), 
Chung et al. (2008)])  

Relate B to B-L 



  

Example 2: The MSSM

● The superpotential

● Besides U(1)Y, U(1)(B-L)α, we have an R-symmetry e.g.

● This remains also with R-parity violating terms as well as 
type-I seesaw with qR(Ni

c) = 0
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● This remains also with R-parity violating terms as well as 
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c) = 0

● But it is anomalous: AR22 = 2 – Nf, AR33 = 3 – Nf;  with Nf = 3, 
AR22 anomaly remains  



  

Example 2: The MSSM

● The superpotential

● Besides U(1)Y, U(1)(B-L)α, we have an R-symmetry e.g.

● This remains also with R-parity violating terms as well as 
type-I seesaw with qR(Ni

c) = 0

● But it is anomalous: AR22 = 2 – Nf, AR33 = 3 – Nf;  with Nf = 3, 
AR22 anomaly remains  

Contruct anomaly-free charge:



  

Example 2: The MSSM

● Wait … we have gaugino masses which break R-symmetry
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[Ibanez & Quevedo (1992)]



  

Example 2: The MSSM

● Wait … we have gaugino masses which break R-symmetry
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e.g.

With Nf=3, NH=1, contruct APQ22 anomaly-free charge:

We still have to cancel APQ33! 
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Example 2: The MSSM

● We can make use of quark chiral symmetry discussed earlier. 
E.g. at T >> 10  GeV, up quark Yukawa interactions are out-of-⁶
equilibrium: yu → 0, gain anomalous U(1)u

● Anomaly-free charge

● Several comments:

– cB and cL can be chosen at will as is convenient e.g. consider a model 
with                                 , choose cB=0, cL≠0 such that R and P are 
conserved by

– Choosing cB=cL, the results are in disagreement with [Ibanez & Quevedo 
(1992)] due to sign error of gaugino chem. potential (could be avoided)

– Effects of R-symmetry in supersymmetric leptogenesis (O(1) effect) 
[CSF, Gonzalez-Garcia, Nardi &  Racker (2010)] and soft leptogenesis 
(O(100) effect) [CSF, Gonzalez-Garcia & Nardi (2011)]
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