

Small-z Resummation in NNLO FF Analysis

Getxo, Bilbao, España, 11.07.2016

D.P.Anderle, T.Kaufmann, F.Ringer, M.Stratmann

Speaker: Daniele Paolo ANDERLE

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- OUR E+E- NNLO FIT
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

DATA SETS:

SI-e ⁺ e ⁻	old: TPC(Phys. Rev. Lett 61, 1263 (1998)), SLD(Phys. Rev. D59,052001 (1999)), ALEPH(Phys. Lett. B357, 487 (1995)), DELPHI(Eur. Phys. J. C5, 585 (1998),Eur. Phys. J.C6, 19 (1999)) OPAL(Eur. Phys. J. C16, 407 (2000),Eur. Phys. J.C7, 369 (1999)), TASSO(Z. Phys.C42, 189 (1989))	
SIDIS	 old: EMC(Z. Phys. C52, 361 (1991)), JLAB(Phys. Rev. Lett. 98, 022001)	
SI- p(anti-)p	old: CDF(Phys. Rev. Lett. 61,1819 (1988)), UAI (Nucl. Phys. B335,261 (1990)), UA2(Z. Phys. C27, 329 (1985))	

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

DATA SETS:

SI-e⁺e⁻

SI- p(anti-)p

new: BaBar(Phys. Rev. D 88, 032011 (2013)), Belle(Phys. Rev. Lett. 111, 062002 (2013))

SIDIS new: HERMES(Ph.D. thesis, Erlangen Univ., Germany, September 2005), Compass(PoS DIS 2013, 202 (2013)), JLAB@12GeV

> new: Phenix(Phys. Rev. D 76,051106 (2007)), Alice(Phys. Lett. B 717, 162 (2012).), Brahms(Phys. Rev. Lett. 98, 252001 (2007)), Star(Phys. Rev. Lett. 97, 152302 (2006))

 $pp \rightarrow (let h)X \longrightarrow future: Star, CMS(JHEP 1210, 087 (2012)), Alice(arXiv:1408.5723), Atlas(Eur. Phys. J. C 71, 1795 (2011))$

TOWARDS A GLOBAL NNLO FF FIT

Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO EVOLUTION KERNELS:

Splitting functions NNLO-Non Singlet: Mitov, Moch, Vogt(Phys.Lett. B638 (2006) 61-67) NNLO-Singlet: Moch, Vogt(Phys.Lett.B659 (2008) 290-296)

NNLO-Singlet: Almasy, Mitov, Moch, Vogt(Nucl. Phys. B854 (2012)) 133-152)

Both computed in x-Space and in Mellin Space

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

SIDIS \longrightarrow NOT COMPUTED YET but work in progress $\gamma q' \rightarrow q \bar{q} q'$ $\gamma q' \rightarrow q \bar{q} q'$ Anderle, de Florian, Rotstein, Vogelsang

6

SI- p(anti-)p ----> NOT COMPUTED YET

PP→(Jet h)X → NOT COMPUTED YET

INIVERSITAT

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SIDIS Soft gluon Resummed results (can be expanded @ NNLO) Anderle,Ringer,Vogelsang (Phys.Rev. D87 (2013) 094021, Phys.Rev. D87 (2013) 3,034014)

SI- p(anti-)p ----> Soft gluon Resummed results (can be expanded @ NNLO)

Work in progress for $\frac{d\sigma}{dp_T d\eta}^{(NNLL)}$ Hinderer, Ringer, Sterman, Vogelsang

7

pp→(let h)X → Resummed results (can be expanded @ NNLO)

Work in progress from T. Kaufmann, Vogelsang

QCD-N'16

TOWARDS A GLOBAL NNLO FF FIT

Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

To include the last processes we need a

NNLO Mellin Space Fitting Program

8

QCD-N'16

The NNLO Evolution Code "Pegasus_FF"

Existing NNLO Evolution CODES:

- X-SPACE APFEL(time-like version C/C++, Fortran77, Python) Bertonel, Carrazza, Rojo (CERN-PH-TH/2013-209)
- Mellin SPACE MELA(Fortran77) Bertone I, Carrazza, Nocera (CERN-PH-TH-2014-265)

Newly born:

Mellin SPACEPegasus_FF (Fortran77)based on Pegasus(Fortran77)Anderle, Ringer, StratmannVogt (Comput.Phys.Commun.170:65-92,2005)

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- OUR E+E- NNLO FIT
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

THE TIME-LIKE EVOLUTION

In the factorisation procedure, the absorption of collinear singularities by fragmentation functions (FF)(in case of massless partons) leads to scaling violation and the appearance of a factorisation scale μ_F

The scale dependance of FF is governed by the Time-Like DGLAP

$$\frac{\partial}{\partial \ln \mu_F^2} D_i^h(x, \mu_F^2) = \sum_j \int_x^1 \frac{dy}{y} P_{ji}\left(y, \alpha_s(\mu_F^2)\right) D_j^h\left(\frac{x}{y}, \mu_F^2\right)$$

H

Time-Like Splitting function perturbatively calculable

$$P_{ji}(y, \alpha_s) = \sum_{k=0}^{k} a_s^{k+1} P_{ji}^{(k)}(y)$$

Universität

Usually rewritten into $2n_f - 1$ equations (charge conjugation and flavour symmetry)

$$D_{\text{NS};v}^{h} = \sum_{i=1}^{n_f} (D_{q_i}^{h} - D_{\bar{q}_i}^{h})$$
$$D_{\text{NS};\pm}^{h} = (D_{q_i}^{h} \pm D_{\bar{q}_i}^{h}) - (D_{q_j}^{h} \pm D_{\bar{q}_j}^{h})$$

IMPROVING THE FIT

$$\frac{\partial}{\partial \ln \mu_F^2} D^h_{\mathrm{NS};\pm,v}(x,\mu_F^2) = P^{\pm,\mathrm{v}}(x,\mu_F^2) \otimes D^h_{\mathrm{NS};\pm,v}(x,\mu_F^2)$$

and two coupled

NON-SINGLET

SINGLET $D_{\Sigma}^{h} = \sum_{i=1}^{n_{f}} \left(D_{q_{i}}^{h} + D_{\bar{q}_{i}}^{h} \right)$ D_{g}^{h}

$$\frac{\partial}{\partial \ln \mu_F^2} \left(\begin{array}{c} D_{\Sigma}^h(x,\mu_F^2) \\ D_g^h(x,\mu_F^2) \end{array} \right) = \left(\begin{array}{cc} P^{\rm qq} & 2n_f P^{\rm gq} \\ \frac{1}{2n_f} P^{\rm qg} & P^{\rm gg} \end{array} \right) \otimes \left(\begin{array}{c} D_{\Sigma}^h(x,\mu_F^2) \\ D_g^h(x,\mu_F^2) \end{array} \right)$$

QCD-N'16

NON-SINGLET

$$P_{\rm ns}^{\pm} = P_{\rm qq}^{\rm v} \pm P_{\rm q\bar{q}}^{\rm v}$$
$$P_{\rm ns}^{\rm v} = P_{\rm qq}^{\rm v} - P_{\rm q\bar{q}}^{\rm v} + n_f (P_{\rm qq}^{\rm s} - P_{\rm q\bar{q}}^{\rm s}) \equiv P_{\rm ns}^{-} + P_{\rm ns}^{\rm s}$$

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

13

QCD-N'16

NON-SINGLET
$$P_{\rm ns}^{\pm} = P_{\rm qq}^{\,\rm v} \pm P_{\rm q\bar{q}}^{\,\rm v}$$

 $P_{\rm ns}^{\,\rm v} = P_{\rm qq}^{\,\rm v} - \mathcal{P}_{\rm q\bar{q}}^{\,\rm v} + n_f (\mathcal{P}_{\rm qq} - \mathcal{P}_{\rm q\bar{q}}^{\,\rm s}) \equiv P_{\rm ns}^{\,\rm -} + \mathcal{P}_{\rm ns}^{\,\rm s}$

$$O P_{ns}^{v} = P_{ns}^{\pm}$$

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{qq}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

QCD-N'16

NON-SINGLET
$$P_{ns}^{\pm} = P_{qq}^{\nu} \pm P_{q\bar{q}}^{\nu}$$

 $P_{ns}^{\nu} = P_{qq}^{\nu} - P_{q\bar{q}}^{\nu} + n_f (P_{qq}^{s} - P_{q\bar{q}}^{s}) \equiv P_{ns}^{-} + P_{ns}^{s}$
@NLO $P_{qq}^{S} = P_{q\bar{q}}^{S}$
 $P_{ns}^{\nu} = P_{ns}^{-}$

SINGLET

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

15

2CD-N'16

NON-SINGLET
$$P_{ns}^{\pm} = P_{qq}^{v} \pm P_{q\bar{q}}^{v}$$

 $P_{ns}^{v} = P_{qq}^{v} - P_{q\bar{q}}^{v} + n_{f}(P_{qq}^{s} - P_{q\bar{q}}^{s}) \equiv P_{ns}^{-} + P_{ns}^{s}$
(@NNLO
($s - \bar{s}$)(x, Q^{2}) $\neq 0$
Response of p and p and

SINGLET

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

CD-N'16

THE GOAL

THE SOLUTION

We can solve the integro-differential DGLAP equation analytically in Mellin space at each fixed order since it becomes an Ordinary Differential Equation

$$\begin{aligned} \frac{\partial \boldsymbol{q}(N, a_{\rm s})}{\partial a_{\rm s}} &= \{\beta_{\rm N^mLO}(a_{\rm s})\}^{-1} \boldsymbol{P}_{\rm N^mLO}(N, a_{\rm s}) \, \boldsymbol{q}(N, a_{\rm s}) \\ &= -\frac{1}{\beta_0 a_{\rm s}} \left[\boldsymbol{P}^{(0)}(N) + a_{\rm s} \left(\boldsymbol{P}^{(1)}(N) - b_1 \boldsymbol{P}^{(0)}(N) \right) \\ &+ a_{\rm s}^2 \left(\boldsymbol{P}^{(2)}(N) - b_1 \boldsymbol{P}^{(1)}(N) + (b_1^2 - b_2) \boldsymbol{P}^{(0)}(N) \right) + \dots \right] \, \boldsymbol{q}(N, a_{\rm s}) \\ &f(N, \alpha_s) = \int_0^1 dy \, y^{N-1} f(y, \alpha_s) \qquad N \in \mathbb{C} \end{aligned}$$

where here $P(N, \alpha_S)$ and $q(N, \alpha_S)$ are the Mellin-Transform of either singlet or non-singlet splitting function and FF respectively

the general solution can be expressed in terms of the evolution matrices U (constructed from the splitting functions) as a simple multiplication

$$q(N, a_{s}) = U(N, a_{s}) L(N, a_{s}, a_{0}) U^{-1}(N, a_{0}) q(N, a_{0})$$

= $\left[1 + \sum_{k=1}^{\infty} a_{s}^{k} U_{k}(N)\right] L(a_{s}, a_{0}, N) \left[1 + \sum_{k=1}^{\infty} a_{0}^{k} U_{k}(N)\right]^{-1} q(a_{0}, N)$

where *L* is defined by the LO solution

16

$$\boldsymbol{q}_{\text{LO}}(N, a_{\text{s}}, N) = \left(\frac{a_{\text{s}}}{a_{0}}\right)^{-\boldsymbol{R}_{0}(N)} \boldsymbol{q}(N, a_{0}) \equiv \boldsymbol{L}(N, a_{\text{s}}, a_{0}) \, \boldsymbol{q}(N, a_{0})$$

$$\boldsymbol{R}_{0} \equiv \frac{1}{\beta_{0}} \boldsymbol{P}^{(0)}$$

18

6

Improving the Fit

TRUNCATED AND ITERATED Solution

Since both β_{N^mLO} and P_{N^mLO} have an expansion in powers of α_s there are different ways of defining the N^mLO solution

$$\begin{split} \boldsymbol{q}_{\mathrm{N^{3}LO}}(a_{\mathrm{s}}) &= \left[\, \boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_{1} \, \boldsymbol{L} - a_{0} \, \boldsymbol{L} \, \boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2} \, \boldsymbol{U}_{2} \, \boldsymbol{L} - a_{\mathrm{s}} a_{0} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{0}^{2} \, \boldsymbol{L} \left(\, \boldsymbol{U}_{1}^{2} - \, \boldsymbol{U}_{2} \right) \\ &+ a_{\mathrm{s}}^{3} \, \boldsymbol{U}_{3} \, \boldsymbol{L} - a_{\mathrm{s}}^{2} a_{0} \, \boldsymbol{U}_{2} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{\mathrm{s}} a_{0}^{2} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \left(\, \boldsymbol{U}_{1}^{2} - \, \boldsymbol{U}_{2} \right) \\ &- a_{0}^{3} \, \boldsymbol{L} \left(\, \boldsymbol{U}_{1}^{3} - \, \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} - \, \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} + \, \boldsymbol{U}_{3} \right) \, \right] \boldsymbol{q}(a_{0}) \end{split}$$

$$egin{aligned} m{R}_0 &\equiv rac{1}{eta_0} m{P}^{T,(0)} \;, \;\; m{R}_k &\equiv rac{1}{eta_0} m{P}^{T,(k)} - \sum_{i=1}^k b_i m{R}_{k-i} \;, \ &[m{U}_k, m{R}_0] &= m{R}_k + \sum_{i=1}^{k-1} m{R}_{k-1} m{U}_i + k m{U}_k \;. \end{aligned}$$

19

TRUNCATED AND ITERATED Solution

TRUNCATED: Keep only terms up to α_s^m in the solution

$$\begin{aligned} \boldsymbol{q}_{\mathrm{N}^{3}\mathrm{LO}}(a_{\mathrm{s}}) &= \left[\boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_{1} \, \boldsymbol{L} - a_{0} \, \boldsymbol{L} \, \boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2} \, \boldsymbol{U}_{2} \, \boldsymbol{L} - a_{\mathrm{s}} a_{0} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{0}^{2} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &+ a_{\mathrm{s}}^{3} \, \boldsymbol{U}_{3} \, \boldsymbol{L} - a_{\mathrm{s}}^{2} a_{0} \, \boldsymbol{U}_{2} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{\mathrm{s}} a_{0}^{2} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &- a_{0}^{3} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{3} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} + \boldsymbol{U}_{3} \right) \right] \boldsymbol{q}(a_{0}) \end{aligned}$$

$$m{R}_0 \equiv rac{1}{eta_0} m{P}^{T,(0)} , \ \ m{R}_k \equiv rac{1}{eta_0} m{P}^{T,(k)} - \sum_{i=1}^k b_i m{R}_{k-i} , \quad [m{U}_k, m{R}_0] = m{R}_k + \sum_{i=1}^{k-1} m{R}_{k-1} m{U}_i + k m{U}_k .$$

20

- It solves the equation exactly only up to terms of order n > m

6

Improving the Fit

TRUNCATED AND ITERATED Solution

ITERATED: Keep the all the m-terms generated from $eta_{
m N^mLO}$ and $m{P}_{
m N^mLO}$

$$\begin{aligned} \boldsymbol{q}_{\mathrm{N}^{3}\mathrm{LO}}(a_{\mathrm{s}}) &= \left[\boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_{1} \, \boldsymbol{L} - a_{0} \, \boldsymbol{L} \, \boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2} \, \boldsymbol{U}_{2} \, \boldsymbol{L} - a_{\mathrm{s}} a_{0} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{0}^{2} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &+ a_{\mathrm{s}}^{3} \, \boldsymbol{U}_{3} \, \boldsymbol{L} - a_{\mathrm{s}}^{2} a_{0} \, \boldsymbol{U}_{2} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{\mathrm{s}} a_{0}^{2} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &- a_{0}^{3} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{3} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} + \boldsymbol{U}_{3} \right) \right] \boldsymbol{q}(a_{0}) \end{aligned}$$

$$\boldsymbol{R}_{0} \equiv \frac{1}{\beta_{0}} \boldsymbol{P}^{T,(0)} , \quad \boldsymbol{R}_{k} \equiv \frac{1}{\beta_{0}} \boldsymbol{P}^{T,(k)} - \sum_{i=1}^{k} b_{i} \boldsymbol{R}_{k-i} , \quad [\boldsymbol{U}_{k}, \boldsymbol{R}_{0}] = \boldsymbol{R}_{k} + \sum_{i=1}^{k-1} \boldsymbol{R}_{k-1} \boldsymbol{U}_{i} + k \boldsymbol{U}_{k} .$$

21

- It corresponds to the solution done in x-Space
- It introduces more higher order scheme-dependent terms

Improving the Fit

TRUNCATED AND ITERATED Solution

ITERATED-TRUNCATED = theoretical uncertainty of order $O(\alpha_s^{m+1})$

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- OUR E+E- NNLO FIT
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

JNIVERSITÄT

OUR SIA FIT

Anderle, Ringer, Stratmann Phys.Rev. D92 (2015) no.11, 114017

Parametrization of light patrons FF @ μ_0

$$D_{i}^{h}(z,Q_{0}) = \frac{N_{i}z^{\alpha_{i}}(1-z)^{\beta_{i}}[1+\gamma_{i}(1-z)^{\delta_{i}}]}{B[2+\alpha_{i},\beta_{i}+1]+\gamma_{i}B[2+\alpha_{i},\beta_{i}+\delta_{i}+1]}$$

So that $N_{i} = \int_{0}^{1} z D_{i}^{h} dz$

Heavy Quark Treatment:

NON PERTURBATIVE INPUT: at $\mu > m_q$ the evolution is set to evolve with n_f+1 for flavours and for the q-heavy quark FF the same functional form as for the light quark is set at $\mu = m_q$

Data sets:

 I 5 Data Set: from Sld, Aleph, Delphi, Opal, Tpc, BaBar, Belle either inclusive, uds tagged, b tagged or c tagged (relevant scales 10.5,29,91.2 GeV). We use a GLOBAL CUT 0.075<z<0.95

24

QCD-N'16

UNIVERSITÄT

PARAMETERS FOR PI+

With only SIA one needs some extra constrains:

parameter	LO	NLO	NNLO	
$N_{u+\bar{u}}$	0.735	0.572	0.579	5 free param needed
$lpha_{u+ar{u}}$	-0.371	-0.705	-0.913	
$eta_{u+ar{u}}$	0.953	0.816	0.865	charge conjugation and isospin
$\gamma_{u+ar{u}}$	8.123	5.553	4.062	symmetry $D^{\pi^{\pm}} = D^{\pi^{\pm}}$.
$\delta_{u+ar{u}}$	3.854	1.968	1.775	u+u $d+d$,
$N_{s+\bar{s}}$	0.243	0.135	0.271	I free param 2 fixed by
$\alpha_{s+\bar{s}}$	-0.371	-0.705	-0.913	Thee param, 2 miled by
$eta_{s+ar{s}}$	4.807	2.784	2.640	$\alpha_{s+\bar{s}} = \alpha_{u+\bar{u}}, \beta_{s+\bar{s}} = \beta_{u+\bar{u}} + \delta_{u+\bar{u}}$
N_g	0.273	0.211	0.174	
α_g	2.414	2.210	1.595	2 free param. I fixed
β_g	8.000	8.000	8.000	
$N_{c+\bar{c}}$	0.405	0.302	0.338	
$lpha_{c+ar{c}}$	-0.164	-0.026	-0.233	3 free param
$\beta_{c+\bar{c}}$	5.114	6.862	6.564	
$N_{b+\overline{b}}$	0.462	0.405	0.445	
$\alpha_{b+\bar{b}}$	-0.090	-0.411	-0.695	F (
$\beta_{b+\bar{b}}$	4.301	4.039	3.681	5 free param
$\gamma_{b+ar{b}}$	24.85	15.80	11.22	-
$\delta_{b+ar{b}}$	12.25	11.27	9.908	$TOT = 1/(f_{max} - f_{max})$
				$I \cup I = I b$ tree param

QCD-N'16

Universität

Scale Dependence

e+ e- μ scale dependance

QCD-N'16

experiment	data	# data	χ^2			
	\mathbf{type}	in fit	LO	NLO	NNLO	
Sld [40]	incl.	23	15.0	14.8	15.5	
	uds tag	14	9.7	18.7	18.8	
	$c \mathrm{tag}$	14	10.4	21.0	20.4	
	$b \mathrm{tag}$	14	5.9	7.1	8.4	
Aleph [41]	incl.	17	19.2	12.8	12.6	
Delphi $[42]$	incl.	15	7.4	9.0	9.9	
	uds tag	15	8.3	3.8	4.3	
	$b \mathrm{tag}$	15	8.5	4.5	4.0	
Opal [43]	incl.	13	8.9	4.9	4.8	
TPC [44]	incl.	13	5.3	6.0	6.9	
	uds tag	6	1.9	2.1	1.7	
	$c \mathrm{tag}$	6	4.0	4.5	4.1	
	$b \mathrm{tag}$	6	8.6	8.8	8.6	
BABAR [10]	incl.	41	108.7	54.3	37.1	>
Belle [9]	incl.	76	11.8	10.9	11.0	
TOTAL:		288	241.0	190.0	175.2	

27

29

Anderle, Ringer, Vogelsang (Phys.Rev. D87 (2013) no.3, 034014)

+Hadron Mass Cor.

Accardi, Anderle, Ringer (Phys.Rev. D91 (2015) 3, 034008)

QCD-N'16

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- OUR E+E- NNLO FIT
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

SMALL-Z LOGARITHMS (SIA)

N^kLO Small-z Logarithms in Splitting Functions and Singlet Coefficient Functions

Double Log Enhancement spoils perturbative convergence even for $\alpha_s \ll 1$

UNIVERSITÄT

RESUMMATION ACCURACY

For example P_{gg} with $N-1=\bar{N}$

-N'16

Re	Fixed Order						
sumr	LO	$lpha_s/ar{N}$	$lpha_s$				
natic	NLO	α_s/\bar{N}^3	$lpha_s/ar{N}^2$	$lpha_s/ar{N}$	$lpha_{s}$		
on	NNLO	$lpha_s/ar{N}^5$	$lpha_s/ar{N}^4$	$lpha_s/ar{N}^3$	α_s/\bar{N}^2	α_s/\bar{N}	$lpha_s$
	•••	•••		•••	•••	•••	
	N ^{k-1} LO	α_s/\bar{N}^{2k-1}	α_s/\bar{N}^{2k-2}	α_s/\bar{N}^{2k-3}	α_s/\bar{N}^{2k-4}	α_s/\bar{N}^{2k-5}	•••
	<pre></pre>						

RESUMMATION VIA UNFACTORIZED SIA van Neerven, Rijken (1996) Vogt (2011), Kom, Vogt, Yeats(2012)

One can proceed by using "all-order" mass factorization: e.g.

A) starting from the unfactorized gluon singlet transversal parton structure function in dimensional regularisation (IR-singularities not yet factorized out and "re-absorbed" in FF)

 $\hat{\mathcal{F}}_{g}^{T}(N, a_{s}, \epsilon) = \sum_{i=q,g} \left[\bar{C}_{i}^{T}(N, a_{s}, \epsilon) \right] \Gamma_{ig}^{N}(N, a_{s}, \epsilon)$

D-Dimensional coef. function: only positive powers of ϵ

$$\bar{C}_i^T(N, a_s, \epsilon) = \delta_{iq} + \sum_{l=1}^{\infty} a_s^l \sum_{k=0}^{\infty} \epsilon^k \bar{c}_{T,i}^{(l,k)}(N)$$

Transition function: incorporates all IR $1/\epsilon$ poles, calculable order by order as a combination of splitting functions

$$\beta_D(a_s) \; \frac{\partial \Gamma_{ik}}{\partial a_s} \; \Gamma_{kj}^{-1} = P_{ij}$$

Eberhard Karls Univer Tübingen

UNIVERSITAT

B) "Plug-in" the small $\bar{N} = N - 1$ limit for known fixed order coefficient functions and splitting functions (e.g. NNLO)

OUR FIT

C) Impose equality order by order in a_s with the small $\bar{N} = N - 1$ limit for the unfactorized structure function which reads

$$\hat{\mathcal{F}}_{g}^{T,(n)}(N,\epsilon) = a_{s}^{n} \frac{1}{\epsilon^{2n-1}} \sum_{l=0}^{n-1} \frac{1}{N-1-2(n-l)\epsilon} \left(A_{T,g}^{(l,n)} + \epsilon B_{T,g}^{(l,n)} + \epsilon^{2} C_{T,g}^{(l,n)} + \dots \right)$$
LL NLL NNLL
D) solve recursively order by order for $\overline{c}_{T,i}^{(n,k)} P_{ij}^{(n-1)} A_{T,g}^{(l,n)} B_{T,g}^{(l,n)} C_{T,g}^{(l,n)}$:
$$\underbrace{\text{KLN - Cancellations}}_{\text{fixed order calculation constrains}} \longrightarrow \text{System of equation solvable}$$
E) From the coefficient of the small N expansion deduct closed form

 C_g^T

-N'16

Resummed solution for evolution

If N^mLL accuracy then for k > m $P^{T,(k)} = P^{T,\mathrm{resum}}|_{a_s^k}$

$$q(N, a_{s}) = U(N, a_{s}) L(N, a_{s}, a_{0}) U^{-1}(N, a_{0}) q(N, a_{0})$$

= $\left[1 + \sum_{k=1}^{\infty} a_{s}^{k} U_{k}(N)\right] L(a_{s}, a_{0}, N) \left[1 + \sum_{k=1}^{\infty} a_{0}^{k} U_{k}(N)\right]^{-1} q(a_{0}, N)$

$$m{R}_0 \equiv rac{1}{eta_0} m{P}^{T,(0)} , \ \ m{R}_k \equiv rac{1}{eta_0} m{P}^{T,(k)} - \sum_{i=1}^k b_i m{R}_{k-i} , \ \ [m{U}_k, m{R}_0] = m{R}_k + \sum_{i=1}^{k-1} m{R}_{k-1} m{U}_i + k m{U}_k .$$

berhard Karls Universität Tübingen

D-N'16

HOW MANY TERMS?

Eberhard Karls Universit Tübingen

THE GOAL

Improving the Fit

Resummed Scale Dependance

In SIA the dependance of the coefficient functions on the factorization scale μ_F can be expressed through the coefficients $c_{k,i}^{(l,m)}$

$$C_{k,i}(N,\alpha_s,\log(Q^2/\mu_F^2)) = c_{k,i}^{(0)}(N) + \sum_{l=1}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^l \left(c_{k,i}^{(l)}(N) + \sum_{m=1}^l c_{k,i}^{(l,m)}(N)\log^m\left(\frac{Q^2}{\mu_F^2}\right)\right)$$

which can be calculated order by order solving the renormalization group equation:

$$\left[\left\{\frac{\partial}{\partial \log \mu_F^2} + \beta(\alpha_s)\frac{\partial}{\partial \alpha_s}\right\}\delta_{ij} - P_{ij}^T\right]C_{k,i}(N,\alpha_s,\log(Q^2/\mu_F^2)) = 0 \quad \begin{array}{l} k = L,T\\ i = q,g \end{array}\right]$$

This leads to the following recursive formula for the coefficients $c_{k,i}^{(l,m)}$

$$c_{k,j}^{(l,m)} = \frac{1}{m} \sum_{w=m-1}^{l-1} c_{k,i}^{(w,m-1)} \left(P_{ij}^{T \ (l-w-1)} - w\beta_{l-w-1}\delta_{ij} \right)$$

38

Universitä

Resummed Scale Dependance

Taking the small $\bar{N} = N - 1$ limit, one can write a closed form for the $\log^m \left(\frac{Q^2}{\mu_F^2}\right)$ dependence up to NNNLL

NLL
$$C_{k,i}^{NLL}(N, \alpha_s, \log(Q^2/\mu_F^2)) = c_{k,i}^{NLL}(N, \alpha_s) + \log\left(\frac{Q^2}{\mu_F^2}\right) (c_{k,j}^{LL} P_{ji}^T, LL)(N, \alpha_s)$$

NNLL $C_{k,i}^{NNLL}(N, \alpha_s, \log(Q^2/\mu_F^2)) = c_{k,i}^{NNLL}(N, \alpha_s) + \log\left(\frac{Q^2}{\mu_F^2}\right) (c_{k,j}^{NLL} P_{ji}^T, NLL)(N, \alpha_s)$
 $+ \log\left(\frac{Q^2}{\mu_F^2}\right) \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{\partial}{\partial(\alpha_s/4\pi)} c_{k,i}^{LL}(N, \alpha_s)$
 $+ \log^2\left(\frac{Q^2}{\mu_F^2}\right) (c_{k,j}^{LL} P_{jg}^T, LL P_{gi}^T, LL)(N, \alpha_s)$
NNNLL + Scale dependance given by NNLL quantities and 3 powers of $\log\left(\frac{Q^2}{\mu_F^2}\right)$

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- OUR E+E- NNLO FIT
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

THE GOAL

Improving the Fit

CONCLUSIONS

- We have performed a NNLO fit for SIA exploring the new features appearing @ NNLO.
- At NNLO it is clear that the extreme phase space regions are better described and that more of the small z and large z logs are taken into account
- We are working on a resummed version of our fit and looking to extend our analysis to an approximate NNLO global fit using expanded NLL results
- We have presented our on-going work towards a resummed FF fit including small-z resummation including its extension to the scale dependance

THANKS FOR YOUR ATTENTION Any questions?

