Introduction to

 TMD and Collinear Twist-3 Formalisms

 TMD and Collinear Twist-3 Formalisms}
(A. Metz, Temple University)

1. TMD approach

- Motivation
- Physics contained in TMDs
- Phenomenology (flavor structure of Sivers and Collins functions)
- Universality properties
- Open issues and emerging fields

2. Collinear twist-3 approach

- Double-spin asymmetry $A_{L T}$ in $\vec{\ell} N^{\uparrow} \rightarrow \ell X$
- Transverse single-spin asymmetry A_{N} in $p^{\uparrow} p \rightarrow h X$: data and flavor structure
- Twist-3 formalism and sign-mismatch problem
- Twist-3 fragmentation contribution to A_{N} in $p^{\uparrow} p \rightarrow h X$
- Lorentz-invariance relations between twist-3 parton correlators
- Transverse single-spin asymmetry A_{N} in $p^{\uparrow} p \rightarrow \gamma X$

3. Summary

Motivation 1: TMDs Appear Frequently

- Appear in QCD-description of many hard semi-inclusive reactions (\rightarrow many talks) $e^{+} e^{-} \rightarrow h_{1} h_{2} X$, etc $\ell N \rightarrow \ell h X, \quad \ell N \rightarrow$ jet jet X, etc $p p \rightarrow\left(\gamma^{*}, Z, W\right), p p \rightarrow \gamma \gamma X, p p \rightarrow \operatorname{Higgs} X, p p \rightarrow(h$ jet $) X$, etc \rightarrow rich phenomenology
- Example: TMDs in Drell-Yan process (two scales: q^{2}, q_{T})

$\frac{d \sigma_{\mathrm{DY}}}{d q_{T}} \sim \mathcal{H}_{\mathrm{DY}} \int d^{2} \vec{k}_{a T} d^{2} \vec{k}_{b T} \delta\left(\vec{q}_{T}-\vec{k}_{a T}-\vec{k}_{b T}\right) f_{1}^{q}\left(x_{a}, \vec{k}_{a T}^{2}\right) f_{1}^{\bar{q}}\left(x_{b}, \vec{k}_{b T}^{2}\right)+Y_{\mathrm{DY}}$

Motivation 2: TMDs Provide 3-D Image

- Definition: unpolarized quarks in transversely polarized nucleon

$$
\begin{aligned}
\Phi^{\left[\gamma^{+}\right] q}\left(x, \vec{k}_{T}\right) & =\frac{1}{2} \int \frac{d \xi^{-}}{2 \pi} \frac{d^{2} \vec{\xi}_{T}}{(2 \pi)^{2}} e^{i k \cdot \xi}\langle P, S| \bar{\psi}^{q}(0) \gamma^{+} \mathcal{W}_{T M D} \psi^{q}\left(\xi^{-}, \vec{\xi}_{T}\right)|P, S\rangle \\
& =f_{1}^{q}\left(x, \vec{k}_{T}^{2}\right)-\frac{\vec{S}_{T} \cdot\left(\hat{P} \times \vec{k}_{T}\right)}{M} f_{1 T}^{\perp q}\left(x, \vec{k}_{T}^{2}\right)
\end{aligned}
$$

- 3-D structure in $\left(x, \vec{k}_{T}\right)$-space
- Sivers function $f_{1 T}^{\perp}$ describes strength of correlation $\vec{S}_{T} \cdot\left(\hat{P} \times \vec{k}_{T}\right)$ (Sivers, 1989)
- Also: TMD quark fragmentation functions (FFs) for $q\left(s_{q}, k\right) \rightarrow h\left(P_{h}\right)+X$ Collins function H_{1}^{\perp} describes strength of correlation $\vec{s}_{q T} \cdot\left(\hat{k} \times \vec{P}_{h T}\right)$ (Collins, 1992)
- Sivers function and Collins function can give rise to SSAs in scattering processes
- In total: 8 leading-twist TMDs for both quarks and gluons (PDFs and FFs)
- Overview of leading-twist quark TMDs

(from arXiv:1212.1701)
- New physics aspects due to transverse momenta (confined motion)

1. transverse momentum dependence of f_{1}, g_{1}, h_{1}
2. new correlation between $\vec{S}_{T}, \vec{k}_{T}\left(f_{1 T}^{\perp}\right)$, and between $\vec{s}_{T}, \vec{k}_{T}\left(h_{1}^{\perp}\right)$
3. new correlation between $\vec{S}_{T}, \vec{s}_{T}, \vec{k}_{T}\left(h_{1 T}^{\perp}\right)$
4. new correlation between $\vec{S}_{T}, \lambda, \vec{k}_{T}\left(g_{1 T}^{\perp}\right)$, and between $\Lambda, \vec{s}_{T}, \vec{k}_{T}\left(h_{1 L}^{\perp}\right)$
5. connection to single-spin asymmetries and quark-gluon-quark correlations
6. ideal playground for pQCD: factorization, universality, resummation
7. allow one to directly study impact of local color gauge invariance of QCD
8. etc
\rightarrow "new structures, new physics, new phenomena"
(quote from X. Ji at 2014 JLab pre-town meeting)

- "Stamp collection"? ... maybe yes ... but we are in good company
- periodic table of elements

${ }^{1} \mathrm{H}$																	${ }^{2} \mathrm{He}$
$3 \mathrm{Li}$	$4 \mathrm{Be}$											${ }^{5} \mathrm{~B}$	${ }^{6}$ C	$7^{7} \mathrm{~N}$	${ }^{8} 0$	${ }^{9} \mathrm{~F}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \end{aligned}$
$\begin{array}{\|l\|} \hline 11 \\ \mathrm{Na} \end{array}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											${ }^{13} \mathrm{Al}$	${ }^{14} \mathrm{Si}$	${ }^{15} P$	${ }^{16} \mathrm{~S}$	${ }^{17} \mathrm{Cl}$	${ }^{18} \mathrm{Ar}$
19	${ }^{20} \mathrm{Ca}$	21	${ }^{22} \mathrm{Ti}$	${ }^{23} \mathrm{~V}$	${ }^{24} \mathrm{Cr}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ \mathrm{Fe} \end{array}$	${ }^{27} \mathrm{Co}$	${ }^{28} \mathrm{Ni}$	${ }^{29} \mathrm{Cu}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	${ }^{31} \mathrm{Ga}$	${ }^{32} \mathrm{Ge}$	33	34	${ }^{35} \mathrm{Br}$	${ }^{36} \mathrm{Kr}$
${ }^{37} \mathrm{Rb}$	$\begin{array}{\|l\|} \hline 38 \\ \mathrm{Sr} \end{array}$	${ }^{39} \mathrm{Y}$	$\begin{gathered} 40 \\ \mathrm{Zr} \end{gathered}$	${ }^{41} \mathrm{Nb}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{gathered} 43 \\ \text { TC } \end{gathered}$	$\begin{array}{\|l\|} 44 \\ \mathrm{Ru} \end{array}$	45	${ }^{46} \mathrm{Pd}$	47	${ }^{48} \mathrm{Cd}$	$\begin{aligned} & 49 \\ & \hline \text { In } \end{aligned}$	$5_{50} \mathrm{Sn}$	${ }^{51} \mathrm{Sb}$	${ }^{52} \mathrm{Te}$	${ }^{53}$	$5^{54} \mathrm{Xe}$
5	${ }^{56} \mathrm{Ba}$		$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	${ }^{73} \mathrm{Ta}$	${ }^{74} \mathrm{~W}$	${ }^{75} \mathrm{Re}$	$\begin{aligned} & 76 \\ & \mathrm{Os} \end{aligned}$	${ }^{77} \text { Ir }$	${ }^{78} \mathrm{Pt}$	$7^{79} \mathrm{Au}$	${ }^{80} \mathrm{Hg}$	$\begin{array}{\|l\|} 81 \\ \mathrm{TI} \end{array}$	$\begin{array}{\|c\|} 82 \\ \mathrm{~Pb} \end{array}$	${ }_{83}^{83}$	84	85	${ }^{86} \mathrm{Rn}$
${ }^{87} \mathrm{Fr}$	${ }_{8}^{88} \mathrm{Ra}$		104 Rf	${ }^{105}$ Db	${ }^{106}$	107 Bh	${ }^{108} \mathrm{Hs}$	${ }^{109}$ Mt	${ }^{110}$ Ds	${ }^{111} \mathrm{Rg}$	${ }_{12}^{112}$	Uut	${ }^{114}$	$\begin{aligned} & 1115 \\ & \text { Uup } \end{aligned}$	${ }^{116}$	117	118

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu

don't forget the isotopes ...

- (supersymmetric) extensions of the Standard Model
- materials science
- etc.

3-D Imaging: Overview of Tools

(from arXiv:1212.1701)
Objects of main interest for 3-D imaging

1. $f\left(x, \vec{k}_{T}\right)$ TMDs: in $\left(x, \vec{k}_{T}\right)$ space
2. $f\left(x, \vec{b}_{T}\right) \quad$ GPDs: in $\left(x, \vec{b}_{T}\right)$ space
3. $W\left(x, \vec{b}_{T}, \vec{k}_{T}\right)$ Wigner distributions (5-D quasi-probability distribution)
(\rightarrow talks by Hatta, Schlegel)

Phenomenology: Sivers and Collins Functions

- Extraction of Sivers function

$$
\Phi^{\left[\gamma^{+}\right]}\left(x, \vec{k}_{T}\right)=f_{1}^{q}\left(x, \vec{k}_{T}^{2}\right)-\frac{\vec{S}_{T} \cdot\left(\hat{P} \times \vec{k}_{T}\right)}{M} f_{1 T}^{\perp q}\left(x, \vec{k}_{T}^{2}\right) \quad(x=0.1)
$$

(from arXiv:1212.1701, based on Anselmino et al, 2011)

- Sivers effect generates distorted distribution of unpolarized quarks
- phenomenology agrees with large- N_{c} prediction $f_{1 T}^{\perp u}=-f_{1 T}^{\perp d}$ (Pobylitsa, 2003)
- Extraction of Collins function
- phenomenology/theory provides/suggests for pion FFs: $H_{1}^{\perp \text {,fav }} \sim-H_{1}^{\perp \text {,dis }}$

Universality Properties of TMDs

- Prediction based on operator definition in quantum field theory (Collins, 2002)

$$
\left.f_{1 T}^{\perp}\right|_{\mathrm{DY}}=-\left.\left.f_{1 T}^{\perp}\right|_{\mathrm{SIDIS}} \quad h_{1}^{\perp}\right|_{\mathrm{DY}}=-\left.h_{1}^{\perp}\right|_{\mathrm{SIDIS}}
$$

- Underlying physics: re-scattering of active partons with hadron remnants:

Final State Interaction in semi-inclusive DIS vs Initial State Interaction in Drell-Yan
(Brodsky, Hwang, Schmidt, 2002)
\rightarrow change in the direction of $\mathcal{W}_{T M D}$

- FSI and ISI provide imaginary part, but lead to opposite sign
- check is crucial test of TMD factorization and collinear twist-3 factorization; mind matching of two approaches (Ji, Qiu, Vogelsang, Yuan, 2006)
- Several labs worldwide aim at measurement of Sivers effect in Drell-Yan:

BNL, CERN, FermiLab, GSI, IHEP, JINR, J-PARC

- Experimental verification of sign reversal is pending (DOE milestone HP13!)
- First indication on process dependence of $f_{1 T}^{\perp}$ from analysis of A_{N} in $\ell N^{\uparrow} \rightarrow \ell X$ (A.M., Pitonyak, Schäfer, Schlegel, Vogelsang, Zhou, 2012)
- Process dependence of $f_{1 T}^{\perp}$ compatible with AnDY data on A_{N} in $p^{\uparrow} p \rightarrow$ jet X (Gamberg, Kang, Prokudin, 2013)
- Measurement of A_{N} for $p^{\uparrow} p \rightarrow W^{ \pm} X$ and $p^{\uparrow} p \rightarrow Z^{0} X$ (STAR, 2015)

- very interesting measurement
- agrees with expected sign
- however, theoretical prediction has large uncertainties (evolution, $f_{1 T}^{\perp \bar{q}}, \ldots$)
- Universality of TMD fragmentation functions (A.M., 2002 / Collins, A.M., 2004 / ...)

$$
\left.H_{1}^{\perp}\right|_{S I D I S}=\left.H_{1}^{\perp}\right|_{e^{+} e^{-}}
$$

- nontrivial result
- agrees with existing phenomenology

Open Issues and Emerging Fields (selection)

- TMD evolution (\rightarrow talks by Echevarria, Boglione, Signori, ...)
- sensitivity to (still poorly constrained) non-perturbative physics
- striking example: A_{N} for $p^{\uparrow} p \rightarrow W^{ \pm} X$

(compilation from Kang, 2015)
- Transverse momentum dependence of cross section for semi-inclusive processes
(Boglione, Gonzales, Melis, Prokudin, 2014 / Collins, et al, 2016 / ...)
(\rightarrow talk by Wang)
- TMD factorization broken for processes like $p p \rightarrow$ jet jet X (Rogers, Mulders, 2010)

- factorization breaking due to complicated color flow
- numerical significance of factorization breaking?
- Gluon TMDs at small x (regime of parton saturation) $(\rightarrow$ talk by Mulders)
- relation between TMD factorization and Color Glass Condensate approach (Dominguez, Marquet, Xiao, Yuan, 2010, 2011 ...)
- which of the gluon TMDs dominate at small x ? (AM, Zhou, 2011 / Domingez, Qiu, Xiao, Yuan, 2011 / Boer et al, 2015, 2016 / ...)
- can (spin-dependent) TMDs be used to study parton saturation ?

Reminder: double-spin asymmetry $A_{L T}$ for $\vec{\ell} N^{\uparrow} \rightarrow \ell X$

- Re-scattering of struck quark matters at twist-3 (gluon with physical polarization)

- Contributing correlators after factorization

(a)

(b)

(c)

(d)
- collinear quark-quark correlator at twist-3 $\rightarrow g_{T}(x)$
- k_{T}-dependent quark-quark correlator $\quad \rightarrow \tilde{g}(x)=\int d^{2} \vec{k}_{T} \frac{\vec{k}_{T}^{2}}{2 M^{2}} g_{1 T}\left(x, \vec{k}_{T}^{2}\right)$
- (collinear) quark-gluon-quark correlator $\quad \rightarrow \quad F_{F T}\left(x, x_{1}\right) \quad G_{F T}\left(x, x_{1}\right)$
- Exploit relations between functions
- relation due to QCD equation of motion

$$
x g_{T}(x)=\int d x_{1}\left[G_{D T}\left(x, x_{1}\right)-F_{D T}\left(x, x_{1}\right)\right]
$$

- Final result

$$
\frac{l^{\prime 0} d \sigma_{L T}}{d^{3} \overrightarrow{l^{\prime}}}=-\frac{8 \alpha_{e m}^{2} x_{B}^{2} \sqrt{1-y} M}{Q^{5}} \lambda_{\ell}\left|\vec{S}_{\perp}\right| \cos \phi_{S} \sum_{q} e_{q}^{2} g_{T}^{q}\left(x_{B}\right)
$$

- twist-3 effect
- final result looks rather simple
- comparable twist-3 observables may have more complicated structure

Transverse SSA in $p^{\uparrow} p \rightarrow \pi X$: Data

$$
A_{N}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \sim \frac{d \sigma_{L}-d \sigma_{R}}{d \sigma_{L}+d \sigma_{R}}
$$

- Charged pions: sample data

(from Aidala, Bass, Hasch, Mallot, 2012)
- Neutral pions: sample data

STAR, $2012 \sqrt{s}=200 \mathrm{GeV}$

PHENIX, $2013 \quad \sqrt{s}=62.4 \mathrm{GeV}$

- General features
- very striking effects at large x_{F}
- A_{N} survives at large \sqrt{s}
- $A_{N}^{\pi^{+}}$and $A_{N}^{\pi^{-}}$have roughly same magnitude but opposite sign
- $A_{N}^{\pi^{0}}$ systematically smaller than $A_{N}^{\pi^{ \pm}}$
- A_{N} is twist-3 observable and cannot be explained in collinear parton model
- data on transverse SSAs represent 40-year old puzzle

Generalized Parton Model and Flavor Structure of A_{N}

(Torino-Cagliari group, $1994 \ldots / \rightarrow$ talk by Murgia)

- Assumes TMD factorization for unpolarized and polarized cross section in $p p \rightarrow h X$

$$
d \sigma=H \otimes \Phi\left(x_{a}, \vec{k}_{T a}\right) \otimes \Phi\left(x_{b}, \vec{k}_{T b}\right) \otimes \Delta\left(z, \vec{k}_{T c}\right)
$$

- Main advantages
- decent description of twist-2 unpolarized cross section at LO
- can mimic effects of higher-order corrections of collinear treatment
- contains certain kinematical higher-twist effects that may be important
- provides simple intuitive picture of A_{N} (through Sivers and Collins mechanisms)
- Main drawbacks
- no derivation of TMD factorization
- (arbitrary) infrared cutoff for k_{T} integrations needed
- physics of ISI/FSI for Sivers effect not included (\rightarrow different source? \rightarrow possibly)
- analytical results in GPM and collinear twist-3 approach differ

$$
\text { Example: } \quad \sigma_{L T, D I S}^{\mathrm{twist-3}} \sim g_{T} \quad \sigma_{L T, D I S}^{\mathrm{GPM}} \sim g_{1 T}
$$

- Flavor structure of A_{N} (use: no antiquarks, dominance of $q g \rightarrow q g$ channel)
- Sivers contribution

$$
\begin{aligned}
& d \sigma_{\text {Siv }}^{\uparrow}\left(\pi^{+}\right) \sim f_{1 T}^{\perp u} \otimes f_{1}^{g} \otimes D_{1}^{\mathrm{fav}}+f_{1 T}^{\perp d} \otimes f_{1}^{g} \otimes D_{1}^{\mathrm{dis}} \\
& d \sigma_{\text {Siv }}^{\uparrow}\left(\pi^{-}\right) \sim f_{1 T}^{\perp d} \otimes f_{1}^{g} \otimes D_{1}^{\mathrm{fav}}+f_{1 T}^{\perp u} \otimes f_{1}^{g} \otimes D_{1}^{\mathrm{dis}}
\end{aligned}
$$

* can explain reversed sign for $A_{N}^{\pi^{+}}$and $A_{N}^{\pi^{-}}$
* partial cancellation btw. contributions from favored and disfavored fragmentation
- Collins contribution

$$
\begin{aligned}
& d \sigma_{\mathrm{Col}}^{\uparrow}\left(\pi^{+}\right) \sim h_{1}^{u} \otimes f_{1}^{g} \otimes H_{1}^{\perp, \mathrm{fav}}+h_{1}^{d} \otimes f_{1}^{g} \otimes H_{1}^{\perp, \mathrm{dis}} \\
& d \sigma_{\mathrm{Col}}^{\uparrow}\left(\pi^{-}\right) \sim h_{1}^{d} \otimes f_{1}^{g} \otimes H_{1}^{\perp, \mathrm{fav}}+h_{1}^{u} \otimes f_{1}^{g} \otimes H_{1}^{\perp, \mathrm{dis}}
\end{aligned}
$$

* h_{1}^{u} and h_{1}^{d} have opposite signs
* can explain reversed sign for $A_{N}^{\pi^{+}}$and $A_{N}^{\pi^{-}}$, and nonzero $A_{N}^{\pi^{0}}$ as $\left|h_{1}^{u}\right|>\left|h_{1}^{d}\right|$
* no cancellation btw. contributions from favored and disfavored fragmentation
* Collins contribution can be larger than Sivers contribution

Transverse SSA in $p^{\uparrow} p \rightarrow h X$ in Twist-3 Factorization

- Estimate in naïve (twist-2) parton model (Kane, Pumplin, Repko, 1978)

$$
A_{N} \sim \alpha_{s} \frac{m_{q}}{P_{h \perp}} \quad \text { Note: } A_{N} \nsim \alpha_{s} \frac{m_{q}}{\sqrt{s}}
$$

- α_{s} due to NLO graphs needed for imaginary part
- transverse spin effects proportional to mass of polarized particle
- calculation clearly reveals twist-3 nature of A_{N}
- Collinear twist-3 factorization in full glory ($P_{h \perp}$ is the only large scale) (Ellis, Furmanski, Petronzio, 1983 / Efremov, Teryaev, 1983, 1984 / Qiu, Sterman, 1991, 1998 / Koike et al, 2000, ... / etc.)
- Generic structure of cross section

$$
\begin{aligned}
d \sigma^{\uparrow} & =H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{C / c(2)} \\
& \rightarrow \quad \text { Sivers-type } \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{C / c(2)} \\
& \rightarrow \quad \text { Boer-Mulders-type } \\
& +H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{C / c(3)}
\end{aligned} \rightarrow \quad \text { "Collins-type" }
$$

- Sivers-type contribution
* contribution from QS function T_{F} (Qiu, Sterman, 1991)

$$
\int \frac{d \xi^{-} d \zeta^{-}}{4 \pi} e^{i x P^{+} \xi^{-}}\langle P, S| \bar{\psi}^{q}(0) \gamma^{+} F_{Q C D}^{+i}\left(\zeta^{-}\right) \psi^{q}\left(\xi^{-}\right)|P, S\rangle=-\varepsilon_{T}^{i j} S_{T}^{j} T_{F}^{q}(x, x)
$$

vanishing gluon momentum \rightarrow soft gluon pole matrix element

* sample diagram for $q q \rightarrow q q$ channel

\rightarrow quark propagator goes on-shell for vanishing gluon momentum
\rightarrow provides required imaginary part
\rightarrow attach extra gluon in all possible ways and consider all graphs and channels
\rightarrow contributions from both ISI and FSI
* generic structure of $d \sigma_{\text {Siv }}^{\uparrow}$

$$
\begin{aligned}
d \sigma_{\mathrm{Siv}}^{\uparrow} & \sim \sum_{i} \sum_{a, b, c} H^{i} \otimes T_{F}^{a}\left(x_{a}, x_{a}\right) \otimes f_{1}^{b} \otimes D_{1}^{c} \\
& +\sum_{i} \sum_{a, b, c} \tilde{H}^{i} \otimes\left(T_{F}^{a}\left(0, x_{a}\right)+\tilde{T}_{F}^{a}\left(0, x_{a}\right)\right) \otimes f_{1}^{b} \otimes D_{1}^{c} \rightarrow \text { SGPS }
\end{aligned}
$$

\rightarrow soft gluon pole (SGP) contribution has relation to TMD approach
\rightarrow soft fermion pole (SFP) contribution has no relation to TMD approach
\rightarrow SFP matrix elements may be small (Kang et al, 2010 / Braun et al, 2011)
$\rightarrow H^{i}$ and \tilde{H}^{i} contain physics of ISI/FSI

* relation between QS function and Sivers function (Boer, Mulders, Pijlman, 2003)

$$
g T_{F}(x, x)=-\left.\int d^{2} \vec{k}_{T} \frac{\vec{k}_{T}^{2}}{M} f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right)\right|_{S I D I S} \sim\left\langle k_{T}(x)\right\rangle
$$

\rightarrow provides very intuitive interpretation of T_{F}
\rightarrow relation between $A_{\text {SIDIS }}^{\text {Siv }}$ in SIDIS and A_{N} in $p^{\uparrow} p \rightarrow h X$ possible
\rightarrow flavor structure of A_{N} like in TMD approach
\rightarrow magnitude and sign of A_{N} may differ from TMD approach due to ISI/FSI

* early successful phenomenology (Kouvaris, et al, 2006 / Kanazawa, Koike, 2010, 2011)
- Sivers-type contribution and sign-mismatch problem (Kang, Qiu, Vogelsang, Yuan, 2011) * assume SSA in $p^{\uparrow} p \rightarrow h X$ is dominated by Sivers-type contribution * T_{F} can be extracted from different sources (direct extraction vs Sivers input)

* striking sign-mismatch!
* model calculation favors sign coming from Sivers input (Braun et al, 2011)
* one may doubt the dominance of the Sivers-type contribution in A_{N}
* doubts supported by analysis of A_{N} in $\ell N^{\uparrow} \rightarrow \ell X$ (A.M., Pitonyak, Schäfer, Schlegel, Vogelsang, Zhou, 2012)
* Boer-Mulders type contribution small (Koike, Kanazawa, 2000)
* can the large A_{N} in $p^{\uparrow} p \rightarrow H X$ be caused by the "Collins-type" contribution?

Fragmentation Contribution to Transverse SSA in $p^{\uparrow} p \rightarrow h X$

1. Contributing effects (compare $\sigma_{L T}$ in inclusive DIS)

- Collinear twist-3 quark-quark correlator: $H(z)$
- Transverse momentum effect from quark-quark correlator: $\hat{H}(z)$
\rightarrow has relation with Collins function: $\hat{H}(z)=z^{2} \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{2 M_{h}^{2}} H_{1}^{\perp}\left(z, z^{2} \vec{k}_{\perp}^{2}\right)$
- Collinear twist-3 quark-gluon-quark correlator: $\quad \hat{H}_{F U}^{\Im}\left(z, z_{1}\right)$

2. Analytical results (A.M., Pitonyak, 2012)

$$
\begin{aligned}
\frac{P_{h}^{0} d \sigma\left(\vec{S}_{\perp}\right)}{d^{3} \vec{P}_{h}}=- & \frac{2 \alpha_{s}^{2} M_{h}}{S} \epsilon_{\perp, \alpha \beta} S_{\perp}^{\alpha} P_{h \perp}^{\beta} \\
& \times \sum_{i} \sum_{a, b, c} \int_{z_{\min }}^{1} \frac{d z}{z^{3}} \int_{x_{\min }^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{1}{x} \frac{1}{x^{\prime} S+T / z} \frac{1}{-x^{\prime} \hat{t}-x \hat{u}} h_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right) \\
& \times\left\{\left[\hat{H}^{c}(z)-z \frac{d \hat{H}^{c}(z)}{d z}\right] S_{\hat{H}}^{i}+\frac{1}{z} H^{c}(z) S_{H}^{i}\right. \\
& \left.+2 z^{2} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{c, \Im}\left(z, z_{1}\right) \frac{1}{\xi} S_{\hat{H}_{F U}}^{i}\right\}
\end{aligned}
$$

- $\hat{H}, H, \hat{H}_{F U}^{\Im}$ related
- Derivative term for \hat{H} computed previously (Kang, Yuan, Zhou, 2010)
\rightarrow does not necessarily dominate
- $S_{H}^{i} \sim 1 / \hat{t}^{3}$ and $S_{\hat{H}_{F U}}^{i} \sim 1 / \hat{t}^{3}$ suggest that contributions from H and $\hat{H}_{F U}^{\Im}$ might dominate in the forward region (large positive x_{F}); color suppression for $S_{\hat{H}_{F U}}^{i}$
- Imaginary part provided by (non-perturbative) fragmentation

3. Numerical results (Kanazawa, Koike, A.M., Pitonyak, 2014)

- Relation between fragmentation functions due to QCD equation of motion

$$
\hat{H}^{h / q}(z)=-\frac{1}{2 z} H^{h / q}(z)+z^{2} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{h / q, \Im}\left(z, z_{1}\right)
$$

- Ansatz for 3-parton fragmentation function
$\frac{\hat{H}_{F U}^{\pi^{+} /(u, \bar{d}), \Im}\left(z, z_{1}\right)}{D_{1}^{\pi^{+} /(u, \bar{d})}(z) D_{1}^{\pi^{+} /(u, \bar{d})}\left(z / z_{1}\right)} \sim N_{\mathrm{fav}} z^{\alpha_{\mathrm{fav}}}\left(z / z_{1}\right)^{\alpha_{\mathrm{fav}}^{\prime}}(1-z)^{\beta_{\mathrm{fav}}}\left(1-z / z_{1}\right)^{\beta_{\mathrm{fav}}^{\prime}}$
- likewise for disfavored fragmentation
- 8-parameter fit to data for A_{N} from RHIC
- Input for transversity h_{1}, Collins function $H_{1}^{\perp}(\hat{H})$, and Sivers function $f_{1 T}^{\perp}$ from $A_{\text {SIDIS }}^{\text {Siv }}, A_{\text {SIDIS }}^{\mathrm{Col}}, A_{e^{+} e^{-}}^{\cos (2 \phi)}$ (Anselmino et al, 2008, 2013)
- Comparison with data

- good fit can be obtained $\left(\chi^{2} /\right.$ d.o.f. $\left.=1.03\right)$
- data cannot be described without 3-parton fragmentation function $\hat{H}_{F U}^{\Im}$
- numerics dominated by contribution from H (fixed by \hat{H} and $\hat{H}_{F U}^{\Im}$)
- fit is rather flexible ($\chi^{2} /$ d.o.f. $=1.10$ for SV2 input)
- Transverse momentum dependence of A_{N}

- preliminary STAR data show rather flat $P_{h \perp}$ dependence of A_{N}
- collinear twist-3 calculation can describe this trend
- note: data not included in fit, only statistical errors shown
- Overall outcome
- simultaneous description of A_{N}, and $A_{\text {SIDIS }}^{\mathrm{Siv}}, A_{\text {SIDIS }}^{\mathrm{Col}}, A_{e^{+} e^{-}}^{\cos (2 \phi)}$ possible
- breakthrough in understanding A_{N} (?)
- information on $\hat{H}_{F U}^{\Im}$ from other sources required
- some support from model calculation (Lu, Schmidt, 2015)

4. Lorentz-invariance relations (Kanazawa, Koike, A.M., Pitonyak, Schlegel, 2015)

- Additional constraint, beyond QCD equation of motion
- Both \hat{H} and H can be expressed through $\hat{H}_{F U}^{\Im}$
- Example

$$
\hat{H}^{h / q}(z)=-\frac{2}{z} \int_{z}^{1} d z_{1} \int_{z_{1}}^{\infty} \frac{d z_{2}}{z_{2}^{2}} \frac{\frac{2}{z_{1}}-\frac{1}{z_{2}}}{\left(\frac{1}{z_{1}}-\frac{1}{z_{2}}\right)^{2}} \hat{H}_{F U}^{h / q, \Im}\left(z_{1}, z_{2}\right) \sim\left\langle P_{h T}(z)\right\rangle
$$

- fragmentation contribution to A_{N} given by 3 -parton correlator $\hat{H}_{F U}^{h / q, \Im}\left(z_{1}, z_{2}\right)$
- intuitive interpretation for twist-3 fragmentation contribution
- Schäfer-Teryaev sum rule suggests flavor structure of A_{N}
- Updated phenomenology needed for
- A_{N} in $p^{\uparrow} p \rightarrow h X$ (Kanazawa, Koike, A.M., Pitonyak, 2014)
- A_{N} in $\ell N^{\uparrow} \rightarrow h X$ (Gamberg, Kang, A.M., Pitonyak, Prokudin, 2014)

Transverse SSA in $p^{\uparrow} p \rightarrow \gamma X$ in Twist-3 Factorization

(Kanazawa, Koike, A.M., Pitonyak, 2014)

- Will be measured at RHIC
- Numerical results

Collinear twist-3 (Kanazawa et al, 2014)

GPM (Anselmino et al, 2013)

- dominated by SGP contribution related to polarized proton \rightarrow clean access to T_{F}
- physics of ISI/FSI enters \rightarrow process-dependence of Sivers function can be checked
- seems ideal for discriminating between collinear twist-3 approach and GPM (different signs)

Summary

- TMD approach
- TMDs appear in many processes and have rich phenomenology
- tremendous progress with regard to concepts and phenomenology
- is intuitive
- can be used for processes like SIDIS and Drell-Yan
- indications about process-dependence of Sivers function
- has conceptual problems for twist-3 observables like A_{N} in $p^{\uparrow} p \rightarrow h X$ (this is not a statement about phenomenology)
- Collinear twist-3 approach
- is also intuitive (to some extent)
- takes into account physics of ISI/FSI for twist-3 observables
- fragmentation contribution may play crucial role for A_{N} in $p^{\uparrow} p \rightarrow h X$ \rightarrow can also solve sign-mismatch problem
- simultaneous description of various SSAs possible
- updated phenomenology for twist-3 fragmentation effects needed
- A_{N} for $p^{\uparrow} p \rightarrow \gamma X$ may provide critical new insights

