

Valerio Bertone

University of Oxford

QCD-N 2016

July 11 - 15, 2016, Getxo, Spain

on behalf of the xFítter developers team

The **factorization theorem** for a hadronic cross section reads:

$d\sigma_{\rm had} = W_{ij} \otimes f_i \otimes f_j \, d\Phi$

The **factorization theorem** for a hadronic cross section reads:

 $d\sigma_{\text{had}} = W_{ij} \otimes [f_i \otimes f_j]$

Partonic cross sections:

- Process dependent
- High-energy dominated
- Computable in perturbation theory

Parton distribution functions:

 $d\Phi$

- Universal (for a given hadronic species)
- Low-energy dominated
- Perturbation theory inapplicable

The **factorization theorem** for a hadronic cross section reads:

 $d\sigma_{\text{had}} = W_{ij} \otimes [f_i \otimes f_j] d\Phi$

Partonic cross sections:

- Process dependent
- High-energy dominated

Parton distribution functions:

- Universal (for a given hadronic species)
- Low-energy dominated
- Computable in perturbation theory Perturbation theory inapplicable

How do we determine parton distribution functions (PDFs)?

Presently, the most accurate and reliable way is through **fits to data**

Fitting PDFs is a **complex** task.

• Dataset:

- as large and varied as possible,
- spanning a wide kinematic range.

• Estimate of the **uncertainty**:

• include full experimental uncertainties,

Cross Section (pb)

5

• ensure a faithful representation.

• Choice of the **parametrization**:

• avoid parametrization biases.

Theoretical inputs:

- higher order corrections,
- heavy-quark mass effects,

• ...

• **Different choices** may lead to substantially **different results**.

xFitter (former HERAFitter) provides a **unique open-source** framework available from:

https://www.xfitter.org/xFitter

that allows the users to:

- **extract PDFs** from a large variety of experimental data,
- assess the **impact** of data **on PDFs**,
- check the **consistency** of experimental data,
- test different **theoretical assumptions**.

Around **30 active developers**:

• theorists and experimentalists.

More than **30 publications** based on xFitter:

• I will discuss one of them on which I worked directly.

xFitter in a Nutshel

• **Parametrize** PDFs at the initial scale:

- several functional forms available ("standard", Chebyshev, etc.),
- define parameters to be fitted.
- **Evolve** PDFs to the scales of the fitted data points:
 - DGLAP evolution up to NNLO in QCD (QCDNUM, APFEL, MELA),
 - non-DGLAP evolutions (dipole, CCFM, ABF).
- Compute **predictions** for the data points:
 - several mass schemes available in DIS (ZM-VFNS, ACOT, FONLL, RT, FFNS),
 - predictions for hadron-collider data through fast interfaces (APPLgrid, FastNLO).

7

• Comparison data-predictions via χ^2 :

- multiple definitions available,
- consistent treatment of the systematic uncertainties.
- **Minimize** the χ^2 w.r.t. the fitted parameters.
 - using MINUIT or by Bayessian reweighing.
- Useful **drawing tools**.

xFitter 1.2: what's new?

• **QED corrections**:

- LO QED corrections as implemented in APFEL, [Bertone, Carrazza and Rojo, arXiv:1310.1394]
- LO QED corrections as implemented in **QEDevol** (QCDNUM plugin), [Sadykov, arXiv:1401.1133]

• possibility to determine the **photon PDFs** from fits to data.

xFitter 1.2: what's new?

• Heavy-quark schemes:

- **FONLL** general-mass scheme via APFEL up to NNLO in QCD:
 - available with pole and $\overline{\text{MS}}$ definitions of the heavy quark masses,
 - complete the set of heavy quark schemes available in xFitter.

- FFNS:
 - for DIS structure functions updated to OPENQCDRAD v2.0b4,
 - interface to Mangano-Nason-Ridolfi code for heavy-quark production at hadron colliders [Mangano, Nason and Ridolfi, Nucl. Phys. B373 (1992) 295].
- Implementation of the Hybrid VFNS [Olness et al., arXiv: | 306.6553]:
 - optimize the treatment of the single experiments independently from one another.
- VFNS with **displaced thresholds**: [Bertone, Glazov, Mitov, Papanastasiou, Ubiali, in preparation]
 - possibility to set heavy-quark masses and thresholds independently.

xFitter 1.2: what's new?

• Fast interfaces:

 interface to the APFELgrid code that allows optimize the computation of hadronic observables in the context of PDF fits: [Bertone, Carrazza and Hartland, arXiv:1605.02070]

• much **faster** than APPLgrid,

• reduction of the memory footprint.

• **Mellin transform method** via interface to the MELA code: [Bertone, Carrazza and Nocera, arXiv:1501.00494]

• **complementary** to the more common *x*-space method,

• **more analytical** (*e.g.* the DGLAP equation can be solve exactly),

• suitable to implement, *e.g.*, threshold **resummation**.

New reweighting option using the Giele-Keller method.
[Giele and Keller, hep-ph/9803393]

Latest Results

List of analyses by xFitter

The link to the list of analyses using former HERAFitter can be accessed <a>here

32 03.2016 xFitter and APFEL teams and A. Geiser arXiv:1605.01946 •A determination of mc(mc) from HERA data u	using a matched heavy flavor scheme
---	-------------------------------------

List of analyses using xFitter

Number	Date	Group	Reference	Title
	2016			
32	06.2016	ATLAS	arXiv:1606.01736	Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at 8 TeV with the ATLAS detector
31	03.2016	Pheno/R.M. Chatterjee et al.	arXiv:1603.09619	• A QCD analysis of CMS inclusive differential Z production data at $sqrt(s) = 8$ TeV
30	03.2016	HERA	arXiv:1603.09628 • Combined QCD and electroweak analysis of HERA data	
29	03.2016	Pheno/A. Accardi et al.	arXiv:1603.08906	Recommendations for PDF usage in LHC predictions

List of analyses using HERAFitter

Number	Date	Group	Reference	Title
	2016			
28	03.2016	LHC/CMS	arXiv:1603.01803 (CMS PAS SMP-14-022)	Measurement of the muon charge asymmetry in inclusive pp->W+X production at 8 TeV
	2015			
27	10.2015	LHC/CMS	CMS PAS SMP-14-001	Measurement of the double-differential inclusive jet cross section at 8 TeV
26	07.2015	REF2014 proceedings	Acta Phys Polon B 46 (2015) 2501, arXiv:1507.05267	Transverse momentum dependent (TMD) parton distribution functions: status and prospects
25	07.2015	PDF4LHC	accepted by Journal of Physics G	The PDF4LHC report on PDFs and LHC data:Results from Run I and preparation for Run II
24	06.2015	HERA/H1 and ZEUS	submitted to EPJC	Combination of Measurements of Inclusive Deep Inelastic e+-p Scattering Cross Sections and QCD Analysis of HERA Data II
23	03.2015	LHC/ATLAS	arXiv:1503.03709	Measurement of the forward-backward asymmetry of e and m pair-production in pp collisions at 7 TeV with the ATLAS detector
22	03.2015	PROSA	arXiv:1503.04581	Impact of the LHCb measurements of forward charm and beauty production on PDFs

... more in preparation.

Latest Results

List of analyses by xFitter

The link to the list of analyses using former HERAFitter can be accessed <a>here

32 03.2016 xFitter and APFEL teams and A. Geiser arXiv:1605.01946 • A determination of mc(mc) from HERA data using a matched heavy flavor scheme

List of analyses using xFitter

V. Bertone et al., arXiv:1605.01946

Number	Date	Group	Reference	Title
	2016			
32	06.2016	ATLAS	arXiv:1606.01736	Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at 8 TeV with the ATLAS detector
31	03.2016	Pheno/R.M. Chatterjee et al.	arXiv:1603.09619	• A QCD analysis of CMS inclusive differential Z production data at $sqrt(s) = 8$ TeV
30	03.2016	HERA	arXiv:1603.09628	Combined QCD and electroweak analysis of HERA data
29	03.2016	Pheno/A. Accardi et al.	arXiv:1603.08906	Recommendations for PDF usage in LHC predictions

List of analyses using HERAFitter

Number	Date	Group	Reference	Title
	2016			
28	03.2016	LHC/CMS	arXiv:1603.01803 (CMS PAS SMP-14-022)	Measurement of the muon charge asymmetry in inclusive pp->W+X production at 8 TeV
	2015			
27	10.2015	LHC/CMS	CMS PAS SMP-14-001	Measurement of the double-differential inclusive jet cross section at 8 TeV
26	07.2015	REF2014 proceedings	Acta Phys Polon B 46 (2015) 2501, arXiv:1507.05267	Transverse momentum dependent (TMD) parton distribution functions: status and prospects
25	07.2015	PDF4LHC	accepted by Journal of Physics G	The PDF4LHC report on PDFs and LHC data:Results from Run I and preparation for Run II
24	06.2015	HERA/H1 and ZEUS	submitted to EPJC	Combination of Measurements of Inclusive Deep Inelastic e+-p Scattering Cross Sections and QCD Analysis of HERA Data II
23	03.2015	LHC/ATLAS	arXiv:1503.03709	Measurement of the forward-backward asymmetry of e and m pair-production in pp collisions at 7 TeV with the ATLAS detector
22	03.2015	PROSA	arXiv:1503.04581	Impact of the LHCb measurements of forward charm and beauty production on PDFs

... more in preparation. 12

- A precise and faithful determination of the **charm mass** is relevant:
 - in principle: as a **fundamental test** of the Standard Model,
 - in practice: as a requirement for accurate **phenomenology at the LHC**.
- The PDG value of the charm mass is $m_c(m_c) = 1.275 \pm 0.025$ GeV:
 - dominated by the high-precision $e^+e^- \rightarrow Q\overline{Q}$ data,
 - interesting to provide **alternative determinations** from other processes.

• Inclusive and charm data in DIS is directly sensitive to the charm mass:

• exploit the precise **HERA1+2 combined** data to extract the charm mass.

• Employing the **MS** definition for the heavy quark masses is **crucial**:

- improvement of **perturbative convergence** w.r.t. the pole mass definition,
- direct handle on $m_c(m_c)$.

- Determination obtained using the **FONLL general mass scheme**:
 - first time in the context of the FONLL scheme,
 - alternative/complementary to the past determinations in the FFNS.
- Formulation of the **FONLL scheme in terms of the** \overline{MS} masses.
- All the formalism is implemented in **APFEL** \Rightarrow **available in xFitter**.
- Our value of $m_c(m_c)$ is determined as:
 - the minimum of the best fit parabola of the χ^2 scan vs. $m_c(m_c)$:
 - $\bullet~$ for each value of $m_c(m_c)~\textbf{PDFs}$ were fitted to data.
 - 1- σ exp. uncertainty estimated as $\Delta \chi^2 = 1$ variation around the minimum.
 - Model, parametrization, and theory uncertainties also estimated.
- The FONLL determination is accompanied by an analogous determination in the **FFNS.**

 $m_c(m_c) = 1.318 \pm 0.054(\exp)^{+0.011}_{-0.010}(\operatorname{param})^{+0.015}_{-0.019}(\operatorname{mod})^{+0.045}_{-0.004}(\operatorname{th}) \text{GeV}$

- Our determinations are **compatible** with each other.
- Compatible with the **PDG world average**.
- Competitive uncertainty.
- General agreement with most of the **past determinations**.
- Differently from the other determinations, ours tend to be **above the PDG value**:
 - the recent **combined HERA1+2 inclusive cross sections** tend to pull the value of $m_c(m_c)$ up.

 $m_c(m_c)$ [GeV]

Summary

- **xFitter** (former HERAFitter) is a unique **open-source** package oriented to fits of PDFs that provides a framework for the **interpretation** and the **analysis** of the experimental data.
- xFitter is presently widely used for many analyses of the **LHC data** to quantify the **constraints on PDFs**.
- The new release of xFitter provides a number of **new features** that allow the users to perform even more accurate analyses,
- I presented one of the many recent results obtained with xFitter.

Outlook

- Many new developments are foreseen:
 - full NLO QCD+QED (EW) corrections,
 - nuclear PDFs,
 - small-x resummation,
 - higher twists,

Backup Slides

xFitter 1.2: QED corrections

- **QED corrections**:
 - LO QED corrections as implemented in **APFEL**,
 - LO QED corrections as implemented in **QEDevol** (QCDNUM plugin).

19

- Plan to include **full NLO QCD+QED** (EW) corrections:
 - to DGLAP and DIS structure functions through APFEL,
 - to hadron-collider processes through MG5_aMC@NLO and SANC.

Analysis Settings

• The **dataset**:

- combined HERA 1+2 charm production cross sections,
- combined HERA 1+2 inclusive DIS cross sections,
- cut on data with $Q^2 < Q_{min}^2 = 3.5 \text{ GeV}^2$.

• The **parametrization**:

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{25}, \quad B_{\bar{U}} = B_{\bar{D}}, \\ xu_v(x) &= xu(x) - x\overline{u}(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2), \qquad A_{\bar{U}} = A_{\bar{D}} (1-f_s) \\ xd_v(x) &= xd(x) - x\overline{d}(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= x\overline{u}(x) \qquad = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x), \\ x\bar{D}(x) &= x\overline{d}(x) + x\overline{s}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

• and its variations:

- strangeness fraction: $f_s = 0.4 \pm 0.1$,
- initial scale: $Q_0^2 = 1 1.5 \text{ GeV}^2$ (bound to be below te charm mass),
- functional form variation: inclusion of the D_{uv} linear term in $xu_v(x)$.

Analysis Settings

• The **model (QCD) settings** and their variations:

• strong coupling: $\alpha_s(M_Z) = 0.118 \pm 0.0015$,

- all heavy quark masses are defined in the $\overline{\text{MS}}$ renormalization scheme:
 - charm mass: $m_c(m_c)$ scan in the range [1.10 1.60] GeV with steps of 0.05 GeV,
 - bottom mass: $m_b(m_b) = 4.18 \pm 0.25$ GeV (PDG value and conservative variation),
 - top mass: $m_t(m_t) = 160 \text{ GeV}$ (PDG value and no variation).

• The **theory settings** and their variations:

- central scales: $\mu_R^2 = \mu_F^2 = Q^2$,
- scale variations: $\mu_R^2 = \mu_F^2 = Q^2 / 2$ and $\mu_R^2 = \mu_F^2 = 2 Q^{2}$,
- variation of the damping factor (only for FONLL).

Results: Param Uncertainty

- The parametric uncertainty is estimated varying:
 - the initial scale Q_0^2 from 1 to 1.5 GeV²,
 - including the linear proportional D_{uv} into the $xu_v(x)$ distribution (variation with the largest impact).

Results: Model Uncertainty

23

• The model uncertainty is estimated varying:

- $\alpha_s(M_Z)$ by 0.0015 around 0.118,
- $m_b(m_b)$ by 0.25 GeV around 4.18 GeV,

• f_s by 0.1 around 0.4.

Results: Theory Uncertainty

• The theoretical uncertainty is estimated varying:

- μ_R^2 and μ_F^2 by a factor two up and down around $\mu_R^2 = \mu_F^2 = Q^2$ (only in the heavy quark contributions),
- the suppression power of the FONLL damping factor from 2 to 1 and 4.

Results: Q_{min}² Depende ce Global dataset, FONLL-C

25

• Criteria to choose the value of Q_{min}^2 :

as **high sensitivity** to $m_c(m_c)$ as possible: $\frac{3}{2}$

small experimental uncertainty on $m_c(m_c)$.

Good description of the full dataset:

- low value of the χ^2 .
- Fit as many points as possible: 3)
- This suggests $Q_{min}^2 \in [3.5:5]$ GeV²:

Results: Qmin² Dependence Global dataset, FONLL-C

1.45 The global results is a compromise: 1.4 1.35 charm data prefer $m_c(m_c) \sim 1.23$ GeV, $m_c(m_c)$ [GeV] 1.3 inclusive data prefer $m_c(m_c) \sim 1.42$ GeV. 1.25 **Inclusive data pull up** the global value. 1.2 1.15 5 3 10 20 30 2 Q_{min}^{2} [GeV²] HERA1+2 combined inclusive cross sections, FONLL-C H1-ZEUS combined charm cross sections, FONLL-C 1.55 1.45 1.4 1.5 1.35 $m_c(m_c)$ [GeV] $m_c(m_c)$ [GeV] 1.45 1.3 1.4 1.25 1.35 1.2 1.3 1.15 2 3 5 10 20 30 2 3 5 10 20 30 Q_{min}^{2} [GeV²] Q_{min}^{2} [GeV²] 26

Results: PDFs

• Comparison with other PDF sets based on a GM-VFNS:

• A detailed study at the level of PDFs is beyond the scope of this work. 27