Studies for a Silicon Telescope to extend the magnet facility at the DESY test beam.

Dimitra Tsionou DPG Frühjahrstagung, 2-Mar-2016

International Large Detector – Tracking Requirements

The ILD is one detector concept for the International Linear Collider
 The ILC is an e+e- accelerator up to centre of mass energies of 1TeV

- > Momentum resolution:
 - $\sigma(\Delta p_T/p_T^2) = 2 \cdot 10^{-5} \text{ GeV}^{-1}$ (an order of magnitude better than ATLAS/CMS)
 - TPC alone: 10⁻⁴ GeV⁻¹

200 space points \rightarrow point resolution better than 100 μm

- > Particle Flow
 - Low material budget (barrel TPC 5% X₀)
 - close to 100% tracking efficiency down to low momenta
- Full angular coverage and high hermeticity

tTh event

Large Prototype TPC and Current Infrastructure

- Test beam area T24/1 at DESY (1-6 GeV e⁻ beams)
- Large Prototype TPC built and installed
- Infrastructure includes a large bore 1T magnet
 - 20% X₀ material budget

- > LP field cage parameters:
 - Length: 61 cm, Diameter: 72 cm
 - Wall material budget: 1.3% X₀
- The endplate is able to host 7 readout modules (dimensions ~22x17 cm²)

 Determination of the momentum resolution in a tracking detector (Gluckstern formula)

$$\sigma_{p_T} = \sqrt{\frac{720}{n+4}} \frac{\sigma \cdot p_T^2}{0.3 B L^2}$$

In the Large Prototype TPC case, there is a broad energy spectra due to the energy loss in the magnet

- In addition, field inhomogenities can cause distortions
- > \rightarrow Hits appear to be displaced
- > \rightarrow This has an impact on the momentum determination

Field distortions in TPC

- Inhomogenities in Electric fields can cause distortions
- > Magnetic field parallel to the electric field
 - ExB terms pronounced at module edges

Distortions in TPC tracks

- > Test beam data
- E and B (1 T) fields present

> A curved fit (helix) is used for the track → distortions can be partially absorbed in the track curvature

External Si tracker for Large Prototype TPC

- Solution: Build an external Si tracker (Si telescope) to provide reference tracks (entry and exit hits)
- Prototype for ILD TPC exists at DESY
- ➤ Goal: Combined test beam with LPTPC → track reference, field distortion corrections, momentum resolution measurements
- The Silicon tracker should be versatile and simple to be used as a telescope by other groups during test beams

Challenge: The Silicon system needs to fit in the existing infrastructure (available space is ~3.5 cm)

The Silicon Tracker Project

> Simulation studies to determine the general characteristics of the system

- Number of Silicon layers
- Distance between the Si layers
- Material budget
- possible dimensions of support structure
- optimal coverage area

> Hardware options

- Investigate hardware options to use in terms of sensors (pixels vs strips), chip, DAQ
- The DAQ system will have to be merged with the current TPC one

> Design support for the Silicon tracker to fit in the current infrastructure

Simulation Studies

- > Simulation Studies to determine the general characteristics of the system
- Seant4 simulation to include accurate model of the current material budget of the infrastructure
- For the Si system to be used as a reference, the Si standalone simulated momentum resolution should be better than the TPC one
 - \rightarrow Criterion used to define the characteristics of the Si system
- Measuring the momentum resolution in standalone Silicon system and standalone TPC system by fitting a crystal ball function to the simulated points

Standalone TPC simulated momentum resolution is 4.58·10⁻⁶ MeV⁻¹

- Dependence of sensor spatial resolution on distance between layers
 - Momentum resolution shown in units of 10⁻⁶ MeV⁻¹

Distance between inner and outer Si layer					y 🛔	
		$4 \mathrm{cm}$	$3~{\rm cm}$	$2 \mathrm{~cm}$	1 cm	z 🖌
Sensor spatial resolution	$2.5 \ \mu m$	2.85	2.90	3.00	3.68	
	$5 \ \mu m$	3.05	3.21	3.63 <mark>↑</mark>	5.52	
	$7.5 \ \mu m$	3.37	3.65	4.43	7.92	
	$10 \ \mu m$	3.68	4.16	5.33	9.90	
	$15 \ \mu m$	4.49	5.36	7.53	14.3	

Sensors with spatial resolution better than 10 µm are needed

ILC	ATLAS	CMS
<10 um	12 µm (pixels)	10 µm (pixels)
το μπ	16 µm (strips)	20-30 µm (strips)

Coverage area

> Hit positions on front and back sensors for 5 GeV e⁻ beams

For lower energy beams, the hit distribution on the back sensors is more spread and shifted to lower y values

Coverage area

> Hit positions on front and back sensors for 2 GeV e⁻ beams

- For lower energy beams, the hit distribution on the back sensors is more spread and shifted to lower y values
- Minimum coverage area: ~2x2 cm² for front and 4x10cm² for back sensors
- Larger coverage area is beneficial (e.g. for distortions, less moving and alignment of the system)
 Dimitra Tsionou | DPG Frühjahrstagung | 2/3/16 | Page 12

Hardware Options

Strip vs Pixel Silicon sensors

Strip sensors (SiD)

- Good spatial resolution (7-8 μm)
- > Large sensor surface \rightarrow Able to instrument large areas (eg 10x20 cm²)

Pixel sensors (Mimosa)

- Excellent spatial resolution (3-4 µm)
- Small sensor surface → Able to instrument minimum area only
- > High cost

SilC sensor 50 µm pitch

Medium cost

Hardware Options (2)

- > Si strip sensors of 25 µm pitch → spatial resolution 7-8 µm
- Si sensor dimensions:
 ~10x10 cm²
- Read out by two kpix chips bump bonded onto the sensor
- Control of sensor and kpix through wire bonding

Capton cable to read out the data from kpix and control the kpix and sensor

Summary & Plans

- Instrumenting T24/1test beam setup with a Silicon telescope able to fit the requirements of the Large Prototype TPC
- Simulation studies to determine the characteristics of the Silicon system
- Sensors with spatial resolution better than 10 µm needed
- Large surface area desirable
- > Plans to acquire hardware within the next months (1 month for ASIC, 3-4 months for sensors)
- Ongoing simulation studies within the ILC framework (DD4hep)
- > Design process for Silicon system support

Back-Up

Time Projection Chamber – Working Principle

- > Magnetic field parallel to the electric field
- Inhomogenities in Electric & Magnetic fields can cause distortions (ExB terms)

