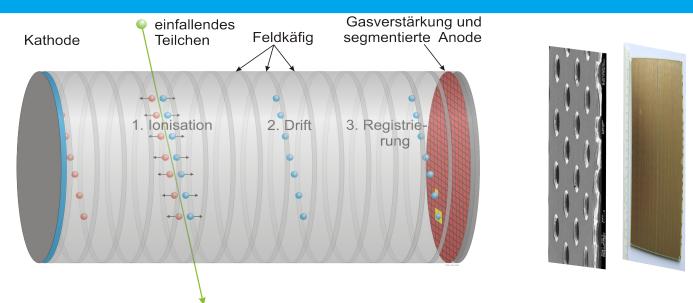

Eine TPC-Auslese mit Timepix und Pads

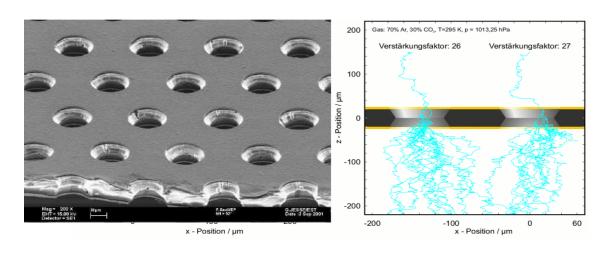
Uli Einhaus für die LCTPC-Kollaboration DPG-Frühjahrstagung Hamburg 02.03.2016

Idee

- Für eine GEM-basierte TPC (Zeitprojektionskammer) -Auslese: Erreiche eine Auslesegranularität in der Dimension von Elektronen-Clustern der Primärionisation
- Das ermöglicht im Vergleich zu bestehenden GEM-basierten Systemen
 - verbesserte Teilchenidentifikation durch Bestimmung des spezifischen Energieverlustes (dE/dx)
 - verbesserte Doppelpunkt- und Doppelspurauflösung
- Kleinere Pads bedeuten eine Zwischengröße zwischen derzeitigen Pads (O(mm)) und Pixeln (O(10 μm))
- Implementation: Verwendung eines Pixelchips für hohe Integrierbarkeit

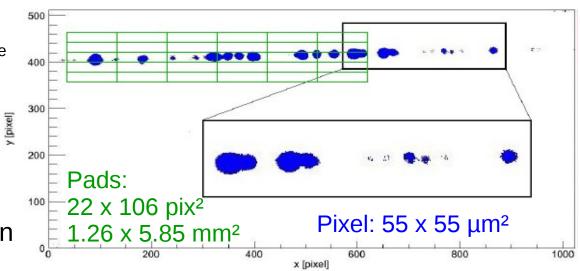

Inhalt

- Idee
 - Cluster counting / Teilchenindentifikation
 - Elektronikintegrierung
- Aktueller Status


Herausforderungen, Pläne

Verstärkung der Elektronen

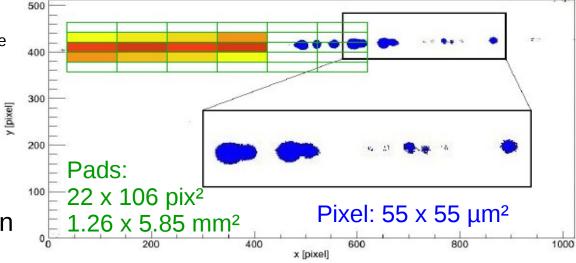
GEMs: Gas Electron Mulipliers / Gaselektronenvervielfacher


Abstand zur Anode, Ladungswolkengröße: O(mm)

Idee: Mittelweg

M. Lupberger: The Pixel-TPC: first results from an 8-InGrid module

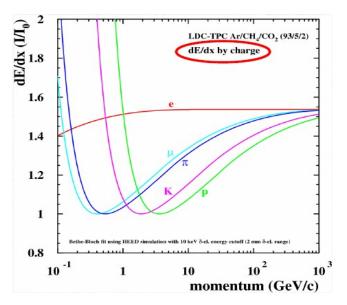
 Cluster tragen die primäre Information der Ionisation

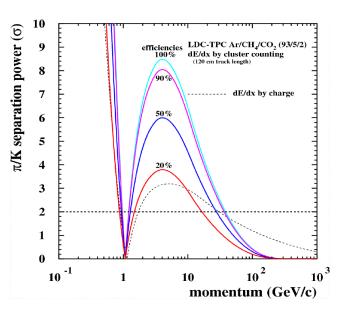


- Für ein GEM-basiertes System: Wie können wir Cluster auflösen?
- Was ist die optimale Padgröße, um
 - die Doppelpunkt- und Doppelspurauflösung zu verbessern?
 - Cluster counting für verbessertes dE/dx zu ermöglichen?
 - \rightarrow O(200 μ m)
- Mehr Auslesekanäle → Ausleseelektronik?

Idee: Mittelweg

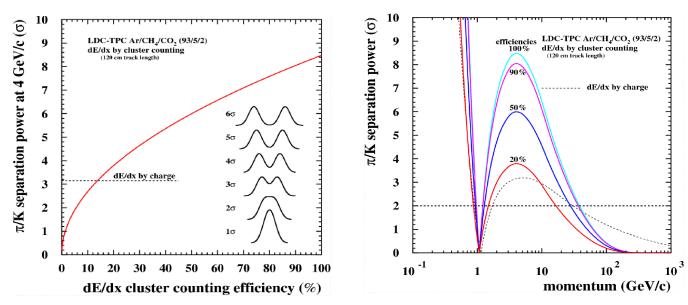
M. Lupberger: The Pixel-TPC: first results from an 8-InGrid module

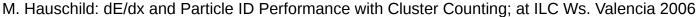



- Cluster tragen die primäre Information der Ionisation
- Für ein GEM-basiertes System: Wie können wir Cluster auflösen?
- Was ist die optimale Padgröße, um
 - die Doppelpunkt- und Doppelspurauflösung zu verbessern?
 - Cluster counting für verbessertes dE/dx zu ermöglichen?
 - \rightarrow O(200 μ m)
- Mehr Auslesekanäle → Ausleseelektronik?

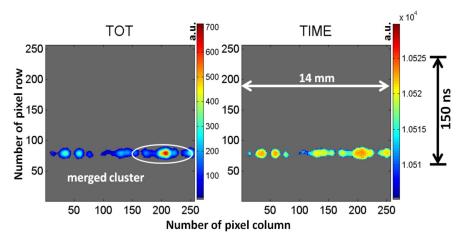
Cluster counting

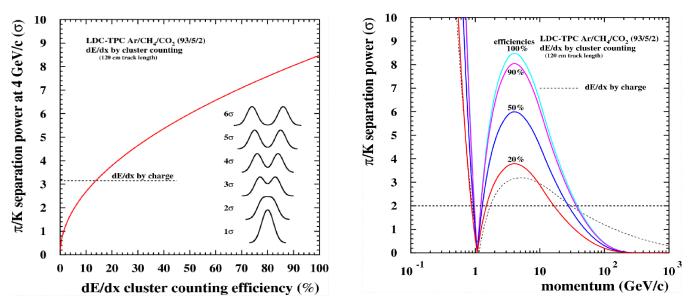
- Primärionisation führt zu Gauß-verteilten Cluster/Strecke-Verteilungen entlang der Spuren
- Aufgrund der δ -Elektronen ist die Ladung/Strecke-Verteilung Landauverteilt \rightarrow größerer RMS \rightarrow schlechtere Korrelation zum Energieverlust
- Cluster counting ermöglicht verbesserte Teilchenunterscheidung im Vergleich mit konventionellem Ladungszählen (Charge counting)




M. Hauschild: dE/dx and Particle ID Performance with Cluster Counting; at ILC Ws. Valencia 2006

Cluster counting

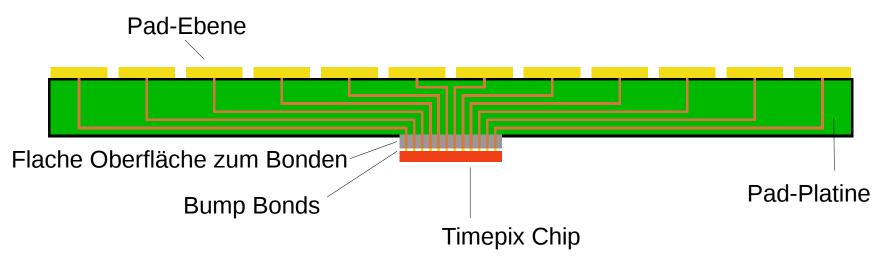

- Primärionisation führt zu Gauß-verteilten Cluster/Strecke-Verteilungen entlang der Spuren
- Aufgrund der δ-Elektronen ist die Ladung/Strecke-Verteilung Landauverteilt → größerer RMS → schlechtere Korrelation zum Energieverlust
- Cluster counting ermöglicht verbesserte Teilchenunterscheidung im Vergleich mit konventionellem Ladungszählen (Charge counting)


Cluster counting-Effizienz: ~25-30%

U. Renz: A TPC with Triple-GEM Gas Amplification and TimePix Readout

Beispiel: Ar:CO₂ 70:30

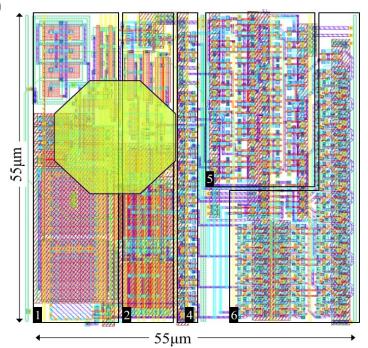
11 Cluster /cm gesehen 40 Cluster /cm erwartet



M. Hauschild: dE/dx and Particle ID Performance with Cluster Counting; at ILC Ws. Valencia 2006

Ansatz

- GEMs, kleine Pads, Timepixchip als Ausleseelektronik
- Die Leitungen von den Pads zum Chip werden durch ein PCB geführt und dann über Bump Bonds mit dem Chip verbunden
- Hoher Integrationsgrad
- "Beliebige" Padgrößen sind möglich → sehr flexibel

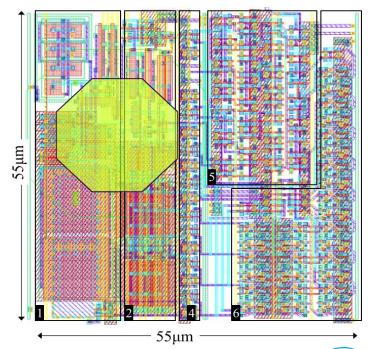

Auslese: Timepix

- Geometrie:
 - 256 x 256 Pixel, 55μm-Raster
 - 1.4 x 1.4 cm² aktive Gesamtfläche
- Weiterentwicklung des Medipix (CERN) mit der Möglichkeit zur Zeiterfassung
- Pixelplan:

Oktagon: Al-Öffnung für Eingangsignal

- 1: Vorverstärker
- 2: Digitalisierung
- 4: Konfiguration
- 5: Modusauswahl
- 6: 14-Bit Zählregister (max. 11810)

[Picture of a Timepix chip]

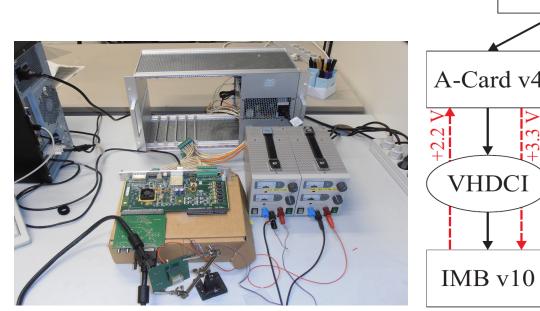

X. Llopart: Timepix Manual v1.0

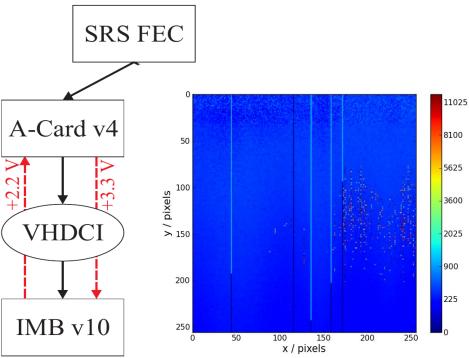
Auslese: Timepix

- Modusauswahl (pro Pixel) in 5:
 - "Time of arrival" (ToA) gibt Zeitinformation
 - "Time over threshold" (ToT) gibt Ladungsinformation
 - Für den Timepix3 (2. Generation) sind beide Modi gleichzeitig möglich
- Externe Uhr gibt Referenzzeitsignal mit 40MHz / 25ns
- Während eines vorgegebenen Shutter-Fensters zählt das Register hoch und wird anschließend ausgelesen (seriel 10ms, parallel 300µs)

X. Llopart: Timepix Manual v1.0

[Picture of a Timepix chip]


Digitale Auslese


- Man erhält nur 1 Wert pro Shutter-Zeit, keinen Spannungsverlauf
 → Auslese um eine "Dimension" verringert
- Problem mit der Belegung/Occupancy: Mehrere Hits während einer Shutter-Zeit geben die Zeitinformation des ersten Hits, aber die Ladungsinformation der Summe aller Hits
 - → Belegung muss untersucht werden
- Für den ILC: Integration über 1 Bunchtrain / volle Kammerionisation, aber zusätzliche Informationen der umgebenden Siliziumdetektorschichten / Silicon Envelope / SIT + SET steht zur Verfügung

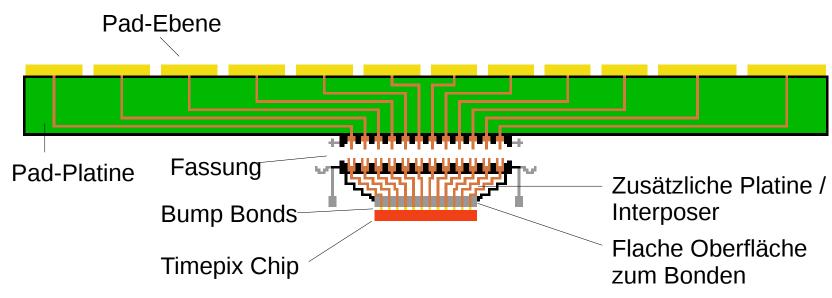
Status: Hardware

- Timepixchip + Auslesekette von der Uni Bonn erhalten und aufgebaut
- Basiert auf dem Scalable Readout System (SRS) vom CERN

Tasks

Ziel: Ein lauffähiges System für eine Teststrahlkampagne

- Entwurf und Herstellung einer Padplatine
- Bump Bonds von Padplatine zu Chip
- Leitungsführung von den Pads zu den Bump Bonds
 - Viele Leiterbahnen → Viele PCB-Schichten notwendig
- Begleitet von intensiven Simulationsstudien


Leitungsführung

- Für Padgrößen < 300μm ist es schwierig, FR-4-PCBs zu nutzen
- Keramikboards ermöglichen kleinere Leiterbahnen O(10μm) und Vias O(100μm), sind aber teurer
- Ggf. wird eine Zwischenlage oder ein sog. Interposer benötigt
 → Siliziumwafer; 3D-Druck?
- Die Wire Bonds am Chipaugsgang sind ebenfalls auf der Oberseite → Für den Timepix3 sind dort auch Vias möglich
- Ist ein separate mechanische Verbindung möglich?

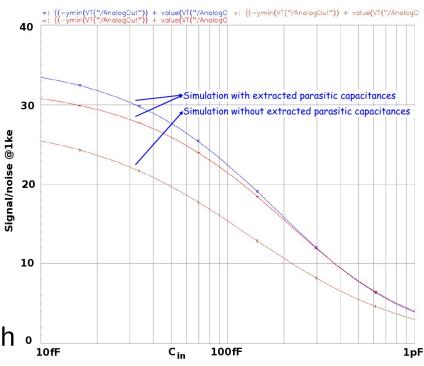
Mechanische Verbindung

- Zusätzliche Verbindungsebene
 - → Einfacher Austausch von Padplatinen
- CPU-Fassung? O(1000) Kanäle
- Kapazitätswachstum?

Kapazität

 Mit wachsender Eingangskapazität sinkt das Signal-Rausch-Verhältnis

Kapazitätswerte:

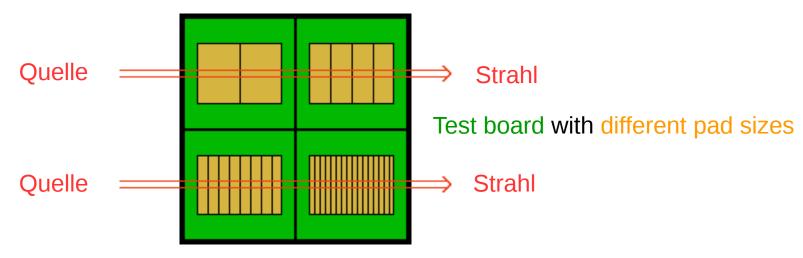

Pads: O(0.1pF)

Leiterbahnen: O(1pF/2.5cm) BGA-Verbindungen: O(0.1pF)

 Timepix wurde entwickelt für C < O(100fF)

Verstärkung: O(5k), mehr ist möglich

 Sieht machbar aus, wird mit einem ersten Testboard untersucht werden



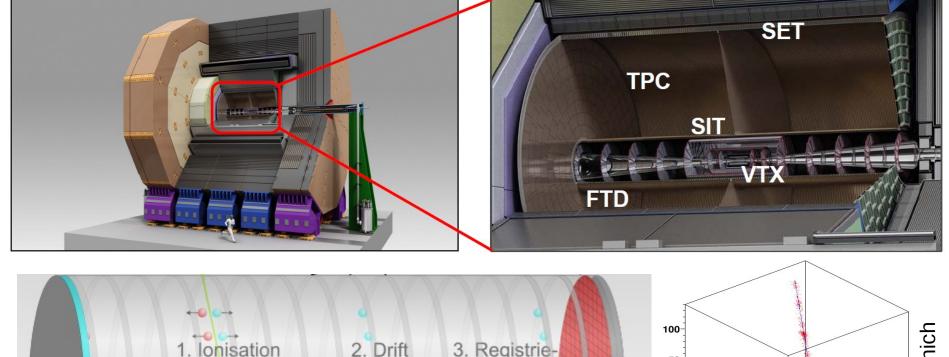
X. Llopart: Timepix Manual v1.0

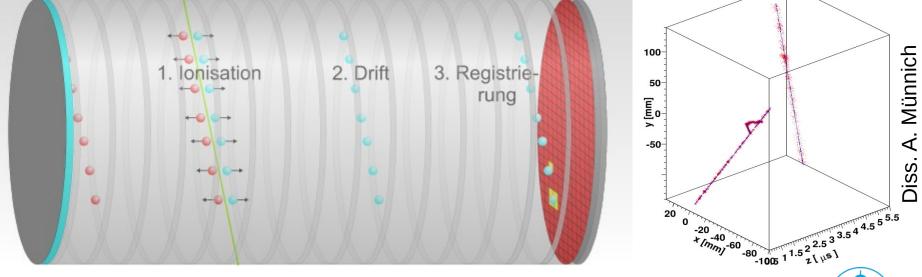
Plan

- Erstes Board für Machbarkeitsnachweis für die Kapazität
- Zweites Board für Machbarkeitsnachweis für Clusteridentifizierung
 - Unterschiedliche Padlayouts auf einem Board
 - 10x10 cm², kleine TPC, radioaktive Quelle

Ziel: Modul für LP t >= 2 Jahre

Zusammenfassung


- Eine GEM-basierte hochgranulare TPC-Auslese wurde vorgestellt
- Deutliche Leistungsverbesserungen bei gleichzeitig hoher Integrierbarkeit sind möglich
- Herausforderungen sind Bump Bonding, Leiterbahnführung und Kapazität
- Ggf. muss ein weniger granularer Chip verwendet werden



Backup

ILD TPC

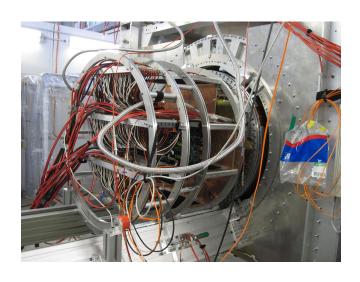
GEMs / Micromegas

GEMs

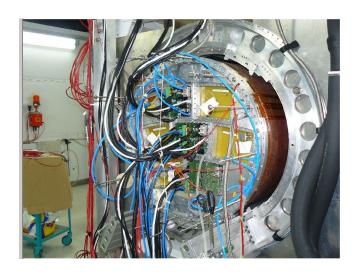
- Variable Anzahl
- Variable Spannungsgradienten
- Geringer Ionenrückfluss → Minimierung möglich durch Anpassung der Feldkofiguration
- Entladungen innerhalb der GEM, nicht gegenüber der Padebene
- GEM-Abstände und r_o ~ O(mm)

Micromegas

- Abstand zur Anode und $r_Q \sim O(100 \mu m)$
- Stabiler Abstand zur Anode

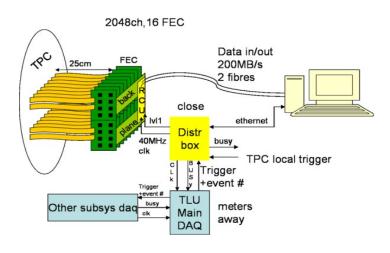


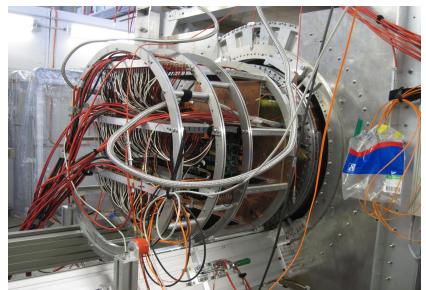
5,000 Pads / Modul


50,000 Pads / Modul

Clusterpakete sehen

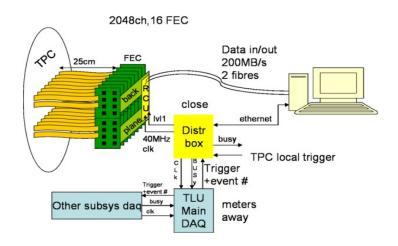
→ Einzelne Cluster sehen

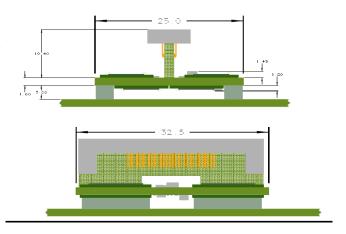




Readout: ALTRO

Test beam 12. 2012

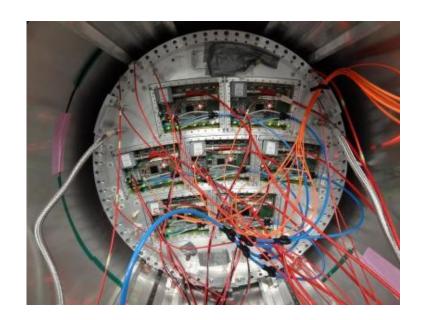

Test beam 06. 2013



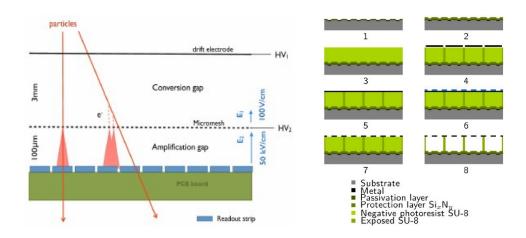
Uli Einhaus | Eine TPC-Auslese mit Timepix und Pads | 02.03.2016 | Page 25

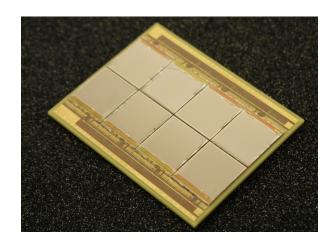
Auslese: ALTRO

- ALTRO
 - 5 to 40 MHz
 - 8 Kanäle / Chip
 - 128 Kanäle / FEC
- Nächste Generation: SALTRO
 - 256 Kanäle / FEC
 - Insgesamt 40mal kleinerer Footprint
 - Power pulsing



Readout: AFTER

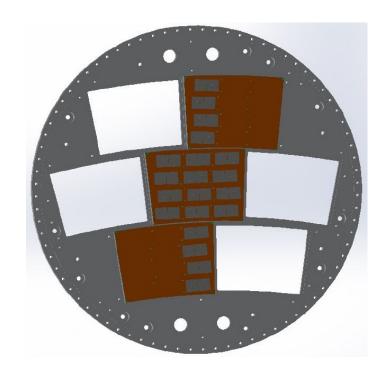

- AFTER
 - 1 to 100 MHz
 - Hoch integriert f
 ür eine geringe Padzahl (~2000 / Modul)

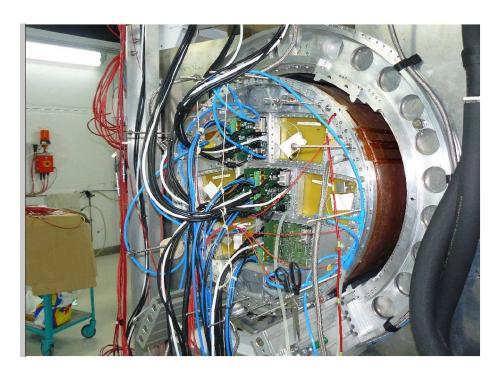


Auslese: Timepix

- InGrid: Timepix + Micromegas
 - Resistive Schicht, Säulen und Gitter direkt auf dem Chip gewachsen
 - Ein Gitterloch pro Pixel

M. Lupberger e.a.: InGrid: Pixelated Micromegas detectors for a Pixel-TPC


J. Timmermans: Progress with pixelised readout of gaseous detectors; at ALCPG 2011



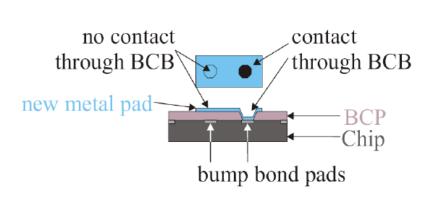
Auslese: Timepix

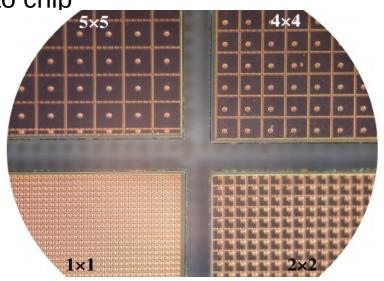
InGrid

- Test beam: 20 Octoboards, $10.5 \cdot 10^6$ Kanäle

M. Lupberger: Preliminary results from the 160 InGrid test beam

Gruppen in LCTPC

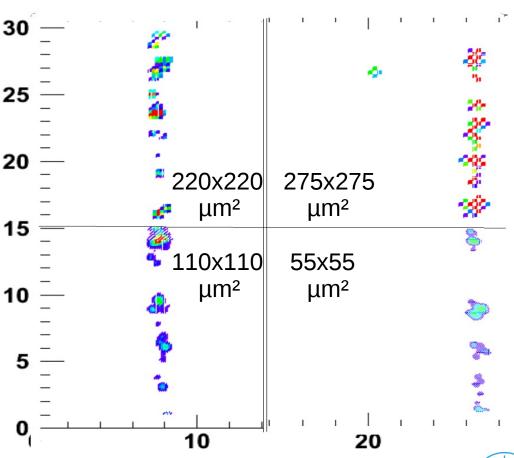

- DESY
 - GEM-Stapel mit 3 GEMs, Pads von 1.26 x 5.85 mm², (S)ALTRO
- Japan
 - GEM-Stapel mit 2 GEMs, Pads, ALTRO
- Saclay
 - Micromegas, Pads von 3 x 7 mm², AFTER
- Bonn, NIKHEF, Freiburg
 - Micromegas, resistive Schicht, Timepix → InGrid
 - Tests mit: GEMs + Timepix



Frühere Tests mit GEMs + Pixel

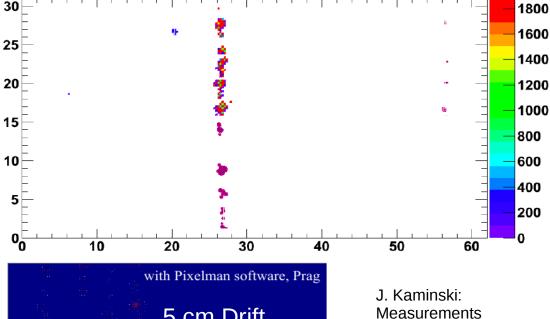
- GEMs + Timepix, Uni Bonn und Uni Freiburg
 - Charge depositions spread continuously over O(100) pixels (compared to Micromegas)
 - High gains (60k to 100k) necessary for signal/noise

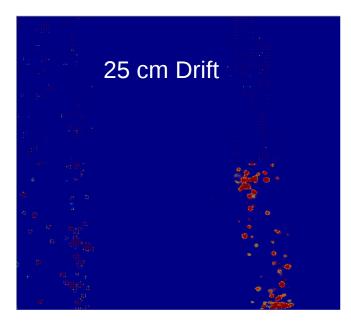
Large pixels by adding metal pads to chip

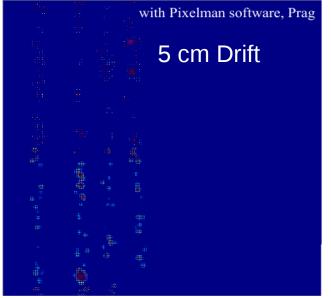

J. Kaminski: Measurements during the October test beam with the GEM-TPC and Timepix; at RD-51 meeting 2010

Frühere Tests mit GEMs + Pixel

- Clusters visible with large pixels → How large can one go?
- Similar to our approach
- But: still need up to 120+ chips per module, bad module occupancy O(.5)
- Utilize full chip!




GEMs + Pixel: Event displays


Large pixels Timepix

[5x5 | 4x4]

[1x1 | 2x2]

J. Kaminski: Measurements during the October test beam with the GEM-TPC and Timepix; at RD-51 meeting 2010