Studies towards optimisation of the Analog Hadronic Calorimeter for future linear collider detectors

＞ Introduction to ILC and ILD
＞ Analog Hadronic Calorimeter (AHCAL) and Particle Flow Concept
＞ AHCAL Optimisation
＞ Software Compensation
＞ Outlook

Huong Lan Tran
for the CALICE-D Collaboration
DPG meeting
Hamburg, 02.03.2016
Introduction to ILC and ILD

• ILC (International Linear Collider):
 • e^+e^- collider of ~ 30 km length
 • Planned energy at $\sqrt{s} = 500 \ GeV$, potential upgrade to 1 GeV
 • Using superconducting RF-cavities for acceleration

• ILD (International Large Detector) is one of the two detectors for ILC, design motivated by Particle Flow Concept
 • Vertex detector and tracker with low material budget
 • High granularity calorimeters
Analog Hadronic Calorimeter

- Developed in CALICE collaboration for ILC detectors
- **High granularity** sandwich calorimeter based on scintillator tiles of 3x3 cm^2 readout by Silicon Photomultipliers (SiPM)
- Depth of $\sim 1.3m$, corresponding to 38 layers
- **8 million channels in total**
- Principle demonstrated with physics prototype

Particle Flow Calorimeter
- Using Pandora Particle Flow Algorithm (PandoraPFA)
- Goal of 3-4% jet energy resolution achieved (non-achievable with classic calorimeter approach)
 - Particle Flow gain even at high energies
Introduction to Particle Flow & PandoraPFA

- In a typical jet:
 - 60% energy in charged hadrons
 - 30% in photons
 - 10% in neutral hadrons
- Particle Flow:
 - Trace individual particles
 - Measure charged particle energy through track momentum
 - Photon energies measured in ECAL: $\sigma_E / E < 20% / \sqrt{E}$ (GeV)
 - Neutral hadron energies measured in HCAL

PandoraPFA:
- Powerful software tool for Particle Flow Algorithm
- Provide visual option for monitoring
- Well maintained/developed
Motivations for AHCAL (re-)optimisation

• Discussion about overall size of ILD and cost
 • HCAL cell sizes, HCAL thickness, different granularities @ different depth

• New version of PandoraPFA with improved pattern recognition shows better resolution for all jet energies

• Results with software compensation suggest further improvement: Software compensation applied to test beam data from CALICE-AHCAL physics prototype:
 • Improvement of hadronic energy resolution by 20% for single hadrons from 10 to 80 GeV

➢ Re-optimisation of AHCAL with newest version of PandoraPFA and software compensation
Software Compensation

• ILD calorimeters are *non-compensating*
 - Higher detector response for electromagnetic compared to hadronic showers $\frac{e}{h} > 1$
 - Non-linearity for hadronic calorimeter response
 - Degradation of energy resolution

• Software compensation is “offline” way to achieve compensation
 - Electromagnetic showers denser than hadronic showers \Rightarrow energy of hits inside electromagnetic sub-showers are typically higher compared to hits inside hadronic sub-showers.
 - Applying different weights for hits of different energy densities

![Graph showing hit energy density vs. hit energy density with EM hits and HAD hits represented with different weights.](image)
Software Compensation Weights

• 9 hit energy density bins

• In energy reconstruction, hits are weighted:

 • Weight of each bin depends on initial energy of particle

\[
E^{SC} = E_{ECAL} + \sum_{i=1}^{9} E^i_{HCAL} \times \omega_i = E_{ECAL} + \sum_{i=1}^{9} E^i_{HCAL} \times (\alpha_i + \beta_i E + \gamma_i E^2)
\]

![Graph showing weight values and bin weight against initial energy (GeV) and energy bin (MIP).](image)
Software Compensation in PandoraPFA

- PandoraPFA uses vertex, tracker and calorimeter information
- Output: Particle Flow Objects (PFO) (including vertex, tracks, clusters)

Cluster-Track energy comparison: if failed, re-clustering

Track-Cluster comparison

Two places where SC can improve

Neutral hadron PFOs registered with software compensated energy

Clusters → Tracks → Vertices

PFOs
• Correction of neutral hadron PFOs energy
• Initial estimation of cluster’s energy used for determination of weights
• Apply to set of Kaon0L and neutron samples from 10 to 95 GeV

- RMS significantly reduced
Single Particle Energy Reconstruction

- Improves linearity in whole range
- Improves resolution by ~20% (similar to results obtained for physics prototype)

➢ Testbeam results reproduced!
Jet Energy Resolution

- Software compensation applied for jets
 - Only for neutral hadrons, after clustering and re-clustering step
 - Only hits in HCAL are weighted

Reconstructed energy distribution closer to simulated energy and width of distribution smaller

- Improves jet energy resolution in whole range

$\sqrt{s} = 200 \text{ GeV}$

h_{PFO}

<table>
<thead>
<tr>
<th>Entries</th>
<th>6005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>197.7</td>
</tr>
<tr>
<td>RMS</td>
<td>6.62</td>
</tr>
</tbody>
</table>

E_{SC}

<table>
<thead>
<tr>
<th>Entries</th>
<th>6005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>199.3</td>
</tr>
<tr>
<td>RMS</td>
<td>6.251</td>
</tr>
</tbody>
</table>

$\frac{3 \times 3 \text{ cm}^2}$
JER vs cell size

• Over all improvement with software compensation

Work in progress
Outlook

Towards cost optimisation

- Look at jet energy resolution as a function of number of channels
- Plot shows that 3x3 cm2 cell size is still a very reasonable choice
Summary & Outlook

• Software compensation:
 • Implemented in PandoraPFA
 • Improves single particle and jet energy resolution
 • Next step: SC in re-clustering

• AHCAL cell size optimisation:
 • 3x3 cm2 still a very reasonable choice

• Final goal:
 • Longitudinal sampling
 • Different cell size w.r.t. different depth
 • ILD optimisation: overall detector radius
Back-up slides
Particle Flow Calorimetry

★ In a typical jet:
- 60% of jet energy in charged hadrons
- 30% in photons (mainly from $\pi^0 \rightarrow \gamma\gamma$)
- 10% in neutral hadrons (mainly n and K_L)

★ Traditional calorimetric approach:
- Measure all components of jet energy in ECAL/HCAL!
- ~70% of energy measured in HCAL: $\sigma_E/E \approx 60%/\sqrt{E(\text{GeV})}$
- Intrinsically “poor” HCAL resolution limits jet energy resolution

★ Particle Flow Calorimetry paradigm:
- Charged particles measured in tracker (essentially perfectly)
- Photons in ECAL: $\sigma_E/E < 20%/\sqrt{E(\text{GeV})}$
- Neutral hadrons (ONLY) in HCAL
- Only 10% of jet energy from HCAL → much improved resolution
AHCAL Optimisation & Software Compensation

- Perform on events with jets from decay of off-shell mass Z bosons to light quarks
- Typically 2 mono energetic back-to-back jets
- Jet energy resolution = $\frac{RMS_{90}}{Mean_{90}}$

Typical 500 GeV Off-Shell mass Z boson decay.
Why Compensation?

- ILD calorimeters are **non-compensating**

Typical hadronic shower

Detected via energy loss of electrons and photons in active medium

Hadronic components:
- Energy loss of charged hadrons, photons, neutrons…
- *Invisible energy*: nuclear binding energy or target recoil

➢ Smaller calorimeter response for this part

Consequences:
- Higher detector response for electromagnetic compared to hadronic showers \(\frac{e}{\hbar} > 1 \)
- Non-linearity for hadronic calorimeter response
- Degradation of energy resolution
Methods to achieve Compensation

- Reducing electromagnetic response
- Increasing hadronic response

Achievable with detector design
- Increase nuclear fission with absorber material
 - Example: ZEUS detector using 238U
- Manipulating response to (slow) neutrons
- Sampling fractions
- …

ZEUS Uranium-Scintillator calorimeter

ZEUS e/h response ratio
$= 1$ within 1% for $E > 3$ GeV
Methods to achieve Compensation

- Reducing electromagnetic response
- Increasing hadronic response
- “Offline” compensation: **Software Compensation**
 - Electromagnetic showers denser than hadronic showers => energy of hits inside electromagnetic sub-showers are typically higher compared to hits inside hadronic sub-showers.
 - Cut out high energy hits to reduce EM response *
 - Applying different weights for hits of different energy densities

![Diagram showing weights for HAD and EM hits](image-url)
Software Compensation

- **Idea:** Applying different weights for hits of different energy densities

- **Weight** defined as:

\[\omega(\rho) = p_1 \cdot \exp(p_2 \cdot \rho) + p_3 \]

where \(\rho \) is hit energy density, \(p_1, p_2, p_3 \) are *beam energy dependent parameters*

- Energy of cluster then computed in software compensation method as:

\[E_{SC} = \sum_{\text{hits}} E_{ECAL} + \sum_{\text{hits}} (E_{HCAL} \cdot \omega(\rho)) \]

- Weights determined through minimising a \(\chi^2 \) function:

\[\chi^2 = \sum_{\text{events}} (E_{SC} - E_{beam})^2 \]

- In following slides: Results on standard ILD detector (with 3x3 cm² AHCAL)
Hit Energy Density and Weights

Samples:
- Kaon0L and neutrons from 10 to 95 GeV generated from IP, targeted only to barrel part
- Select only events with 1 cluster
 - Events where hadronic showers started already in EM calorimeter: only HCAL hits are weighted
 - Cluster with no hit in muon chamber

Weight determination:
- Through χ^2 minimisation
- For each beam energy, weights are defined with three parameters p_1, p_2, p_3 given by χ^2
 \[
 \omega(\rho) = p_1 \cdot \exp(p_2 \cdot \rho) + p_3
 \]
- For each of p_1, p_2, p_3 obtain 10 values at 10 energies \Rightarrow fit as function of energy
Outlook - Using my numbers

Towards cost optimisation

- Look at jet energy resolution as a function of number of channels
- Plot shows clear preference for 3x3 cm2 cell size
- Software compensation to be applied

![Graph showing jet energy resolution as a function of number of channels, with a preference for 3x3 cm2 cell size. The graph includes data for different energies (91 GeV, 200 GeV, 360 GeV, and 500 GeV). The graph also indicates before and after software compensation.]
• Semi-digital reconstruction:
 • Counting hits at 3 thresholds N1, N2, N3
 • \(N_{tot} = N1 + N2 + N3 \)
 • \(\text{EnergySD} = \alpha N1 + \beta N2 + \gamma N3 \)

where:

\[
\begin{align*}
\alpha &= \alpha_1 + \alpha_2 N + \alpha_3 N^2 \\
\beta &= \beta_1 + \beta_2 N + \beta_3 N^2 \\
\gamma &= \gamma_1 + \gamma_2 N + \gamma_3 N^2
\end{align*}
\]

Software compensation mimics Semi-Digital:

• Define bin

• Energy total = \(\text{Sum}_\text{bin} (\text{weight}_\text{bin} \times \text{SumEnergy}_\text{bin}) \)

• \(\text{weight}_\text{bin} = a + bE + cE^2 \)
Semi-digital Reconstruction

Weights
- Beam Energy: 10 GeV
- Beam Energy: 30 GeV
- Beam Energy: 60 GeV
- Beam Energy: 80 GeV
- Beam Energy: 95 GeV

Weights values

Weight values

E_{\text{reco}} [\text{GeV}]

hPFO

Entries 19949
Mean 60.43
RMS 5.924

PFO + SC

Entries 19949
Mean 59.58
RMS 4.93