Constraints on the off-shell Higgs coupling and $\mathcal{A}_{H^* \to Z_* Z_*} \approx \overline{-}_{H^* \to Z_* Z_*} |\mathcal{A}_{gg \to H^* \to Z_* Z_*}|^2 \approx \overline{-}_{F^* F^*} \xrightarrow{\to \text{const.}}_{F^*} s \gg m_h^2$ Non-SM Higgs interaction in EFF with Differential X-section

Yanping Huang (DESY)

Introduction

- Higgs On-Shell property measurement: Coupling, Spin, width, cross section, etc.
- ★ It is impossible to extract the coupling and Higgs width separately from on-shell property measurement → Importance of Γ_H measurement.

 $\sigma_{i \to H \to f}^{on-shell}(SM) \sim \frac{g_i^2 g_f^2}{\Gamma}$

• LHC is insensitive to the direct Higgs width measurement (Γ_{SM} ~4.2MeV)

Г: obs.(exp.)@ 95%	Н→үү	H→ZZ
ATLAS	5.0 (6.2) GeV	2.6 (6.2) GeV
CMS	2.4 (3.1) GeV	3.4 (2.8) GeV

3-order of magnitude larger w.r.t. SM width

- * Measurement of the Higgs off-shell signal strength.
- With the combination between on-shell and off-shell analysis:
 - Assuming the on-shell couplings are the same as the off-shell couplings, the coupling measurements can be reinterpreted as the constraints on $\Gamma_{\rm H}$.
 - Assuming SM Higgs width, it can be reinterpreted as the constraints on off-shell and on-shell coupling ratio

$H^* \rightarrow ZZ \rightarrow 41$ analysis

- Based on the on-shell $H \rightarrow ZZ^* \rightarrow 41$ analysis.
- **Binned ML fit observable**: Matrix element (ME) kinematic discriminant:

$$ME = \log_{10} \left(\frac{P_H}{P_{gg} + c \cdot P_{q\bar{q}}} \right)$$

- enhance separation among signal and backgrounds.
- m₄₁ range: 220 1000 GeV

$H^* \rightarrow ZZ \rightarrow 2l2v$ analysis

- Based on $ZH \rightarrow$ invisible analysis.
- **Binned ML fit observable**: transverse mass:

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left(\sqrt{m_Z^2 + \left|\boldsymbol{p}_{\rm T}^{\ell\ell}\right|^2} + \sqrt{m_Z^2 + \left|\boldsymbol{E}_{\rm T}^{\rm miss}\right|^2}\right)^2 - \left|\boldsymbol{p}_{\rm T}^{\ell\ell} + \boldsymbol{E}_{\rm T}^{\rm miss}\right|^2}$$

- enhance sensitivity to $gg \rightarrow H^* \rightarrow ZZ$ signal
- m_T range: 380 1000 GeV

$H^* \rightarrow WW \rightarrow ev\mu v$ analysis

- Based on inclusive on-shell $H \rightarrow WW^* \rightarrow lvlv$ analysis.
- One-bin ML fit observable: a new variable Keep the inclusive-like shape

 $\mathbf{R}_8 = \sqrt{m_{\ell\ell}^2 + \left(a \cdot m_{\mathrm{T}}^{WW}\right)^2}$

- Signal region: $R_8>450$ GeV, $\Delta\eta_{11}<1.2$, b-veto
- Main $qq \rightarrow WW$ and top background normalised from control region.

Results for the individual off-shell analysis — NLL scanning

Negative log-likelihood, -2ln Λ , as a function of $\mu_{offshell}$:

★ ZZ→4l and WW→evµv channel is statistics dominate

 \blacklozenge sensitivity in ZZ \rightarrow 2l2v is significantly reduced by theory systematic uncertainty

and WW analysis

- Correlate the main theoretical uncertainty and related experimental uncertainty
- Two fitting assumptions:

٠

- Common $\mu_{off-shell}$, assuming ratio of ggF and VBF production modes as in SM.
- Fit $\mu_{\text{off-shell}}$ for ggF and assume SM VBF couplings

Breakdown of systematic uncertainties

Systematic uncertainty	95% CL_s up. lim. on $\mu_{\text{off-shell}}$
Interference $gg \to (H^* \to)VV$	7.2
QCD scale $K^{H^*}(m_{VV})$ (correlated component)	7.1
PDF $q\bar{q} \rightarrow VV$ and $gg \rightarrow (H^* \rightarrow)VV$	6.7
QCD scale $q\bar{q} \rightarrow VV$	6.7
Luminosity	6.6
Drell–Yan background	6.6
QCD scale $K_{qq}^{H^*}(m_{VV})$ (uncorrelated component)	6.5
Remaining systematic uncertainties	6.5
All systematic uncertainties	8.1
No systematic uncertainties	6.5

- fix all NP to the profit results, with the exception of the one under study.
- Dominated by the statistical uncertainty and QCD theoretical uncertainty

Combination of

• Combine with 2012 on since $\mathbb{Z}_{\mathcal{L}}$ and $\mathbb{Z}_{\mathcal{L}}$ and $\mathbb{Z}_{\mathcal{L}}$ and $\mathbb{Z}_{\mathcal{L}}$

----- expected no syst

10 5 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 $R_{H^*}^B = \frac{K(gg \rightarrow VV)}{K(gg \rightarrow H^* \rightarrow VV)}$

- Interpretation:
 - $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$, profiling κ_g and κ_V separately (assumes same on-shell and off-shell couplings)

12 % CL 15

• $R_{gg} = \kappa_{g,off-shell}^2 / \kappa_{g,on-shell}^2$, profiling $\kappa_V(assumes \Gamma_H / \Gamma_H^{SM} = 1)$

Comparison with CMS results

- Different limit setting method.
- Treatment of ggZZ background k-factors:
 - CMS uses 10% flat uncertainty
 - ATLAS: a results with a scan of the k-factors.
- Treatment of the interference uncertainties:
 - CMS: 10% (correlated with ggZZ bkg)
 - ATLAS: 30% uncorrelated with the rest

$\Gamma/\Gamma_{\rm SM}$ =obs.(exp.)	CMS	ATLAS
41	8.0(10.1)	μ:7.3(10.6)
212v	8.1(10.6)	μ:11.0(10.6)
lvlv		μ:17.2(21.3)
combined	5.4(8.0)	5.5(8.0)

Conclusion

- Using the results from five HSG2 and HSG3 analyses, can set 95% CL observed (expected) limits:
 - $\mu_{\text{off-shell}} < 5.1 8.6 \ (6.7 11.0) \ \text{for } R^{\text{B}}_{\text{H}*} = 0.5 2.0$
 - $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM} < 4.5-7.5$ (6.5-11.2) for $R^{\rm B}_{\rm H}*=0.5-2.0$
 - $\Gamma_{\rm H} < 22.7 \ (33.0) \text{ MeV for } \mathbb{R}^{\rm B}_{\rm H} = 1$
 - Rgg < 4.7–8.6 (7.1–13.4) for $R^{B}_{H*}=0.5-2.0$
- It will be promising with high statistical sample and more precision theoretical precision.

Constraint on non-SM interaction in EFT

The interactions of the Higgs boson have been probed using the κ-framework: Coupling strength is allowed to vary from SM, instead of Higgs kinematic properties.

An alternative framework is in **EFT approach**:

•

•

- New tensor structure for the interactions between Higgs and SM particle (kinematic shape can be changed)
- Probe the new physics that exists at larger energy scale

Analysis Overview

• Aim: setting limits on Wilson coefficients with the 6-dimension CP-even/ odd operator with $H \rightarrow \gamma \gamma$ differential cross sections.

 $\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}$ $+ \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB},$

"Wilson coefficients" c_i specify the new interaction strength

Wilson coefficient	Description
Cg	Eff. copuling of Higgs to gluons
\tilde{C}_{g}	Eff. copuling of Higgs to gluons
\mathcal{C}_{γ}	Eff. copuling of Higgs to Photons
$ ilde{C}_{\gamma}$	Eff. copuling of Higgs to Photons
C _H	Eff. coupling of Higgs to itself
CT	Higgs EoM term
C _B	Higgs EoM term & Z
C_W	Higgs EoM term & W
C _{HW}	Higgs EoM term & W
\tilde{C}_{HW}	Higgs EoM term & W
C _{HB}	Higgs EoM term & Z
- Ĉ _{HB}	Higgs EoM term & Z

Theoretical prediction

- Take the high order SM prediction as the reference (MG5_aMC@NLO for ggF)
- Introduce the anomalous coupling effect by the correction scale factor (ratio of SM + AP case to the SM case).
- Sum over the different Higgs production mechanisms

Statistics correlation between different distributions

Limits on the Wilson coefficients are set by constructing a χ^2 function:

$$\chi^{2} = \left(\vec{\sigma}_{data} - \vec{\sigma}_{pred}\right)^{T} C^{-1} \left(\vec{\sigma}_{data} - \vec{\sigma}_{pred}\right)$$

- Fit parameter of interest: Wilson coefficients ci
- Statistical correlations between differential distributions
 - "Bootstrap" method is used: samples are constructed from the data by assigning each event a weight pulled from a Possion distribution with unit mean

- No significant deviation from the SM are observed
- Provide more stringent constraint on the HVV Tensor structure w.r.t. the dedicated Spin and parity analysis in di-boson decays.

Results for the individual off-shell analysis — CLs limit setting

• CLs limit on $\mu_{offshell}$ as a function of unknown $R^B_{H^*}$ with alternative hypothesis of SM ($\mu_{offshell}=1$)

	Observed		Median expected		cted	
$R^B_{H^*}$	0.5	1.0	2.0	0.5	1.0	2.0
$ZZ \rightarrow 4\ell$ analysis	6.1	7.3	10.0	9.1	10.6	14.8
$ZZ \rightarrow 2\ell 2\nu$ analysis	9.9	11.0	12.8	9.1	10.6	13.6
$WW \rightarrow e \nu \mu \nu$ analysis	15.6	17.2	20.3	19.6	21.3	24.7

Theoretical uncertainty for ggF processes

- ggF processes include: gg \rightarrow H* \rightarrow WW(S), gg \rightarrow WW(B) and gg(\rightarrow H*) \rightarrow WW(SBI)
- QCD scale Un. is variated by NNLO K-factor (20%)
- Extra QCD scale un. is assigned to take into account the uncertainty difference between K^{H*} and $K^{H*}_{gg}(-11.8^{+15.9})$
- QCD scale uncertainty on interference component: 30%
- PDF uncertainty is variated via:

 $w = 1 \pm 0.0066 \times \sqrt{m_{WW}/\text{GeV} - 10}$ from yellow book

Taking into account the PDF acceptance Un., it is ~15% in SR

Anomalous coupling in Madgraph

The anomalous Higgs interactions introduced using FeynRules:

$$\begin{aligned} \mathcal{L}_{3} &= -\frac{m_{H}^{2}}{2v}g_{hhh}^{(1)}h^{3} + \frac{1}{2}g_{hhh}^{(2)}h\partial_{\mu}h\partial^{\mu}h \\ &- \frac{1}{4}g_{hgg}G_{\mu\nu}^{a}G_{a}^{\mu\nu}h - \frac{1}{4}\tilde{g}_{hgg}G_{\mu\nu}^{a}\tilde{G}^{\mu\nu}h - \frac{1}{4}g_{h\gamma\gamma}F_{\mu\nu}F^{\mu\nu}h - \frac{1}{4}\tilde{g}_{h\gamma\gamma}F_{\mu\nu}\tilde{F}^{\mu\nu}h \\ &- \frac{1}{4}g_{hzz}^{(1)}Z_{\mu\nu}Z^{\mu\nu}h - g_{hzz}^{(2)}Z_{\nu}\partial_{\mu}Z^{\mu\nu}h + \frac{1}{2}g_{hzz}^{(3)}Z_{\mu}Z^{\mu}h - \frac{1}{4}\tilde{g}_{hzz}Z_{\mu\nu}\tilde{Z}^{\mu\nu}h \\ &- \frac{1}{2}g_{haz}^{(1)}Z_{\mu\nu}F^{\mu\nu}h - \frac{1}{2}\tilde{g}_{haz}Z_{\mu\nu}\tilde{F}^{\mu\nu}h - g_{haz}^{(2)}Z_{\nu}\partial_{\mu}F^{\mu\nu}h - \frac{1}{2}g_{hww}^{(1)}W^{\mu\nu}W_{\mu\nu}^{\dagger}h \\ &- \left[g_{hww}^{(2)}W^{\nu}\partial^{\mu}W_{\mu\nu}^{\dagger}h + \text{h.c.}\right] + g(1 - \frac{1}{2}\bar{c}_{H})m_{W}W_{\mu}^{\dagger}W^{\mu}h - \frac{1}{2}\tilde{g}_{hww}W^{\mu\nu}\tilde{W}_{\mu\nu}^{\dagger}h \\ &- \left[\tilde{y}_{u}\frac{1}{\sqrt{2}}\left[\bar{u}P_{R}u\right]h + \tilde{y}_{d}\frac{1}{\sqrt{2}}\left[\bar{d}P_{R}d\right]h + \tilde{y}_{\ell}\frac{1}{\sqrt{2}}\left[\bar{\ell}P_{R}\ell\right]h + \text{h.c.}\right],\end{aligned}$$

Different Lagrangian configurations are used in Madgraph and VBFNLO, the direct relation of the coefficients $c_{\rm HWW} = \frac{m_W^2}{m_W} f_{\rm WWW}$

can be retrieved as:

$$c_{\rm HW} = \frac{\Lambda^2}{\Lambda^2} f_{\rm WW}$$
$$c_{\rm HW} + c_{\rm W} = -\frac{m_W^2}{2\Lambda^2} f_{\rm W}$$
$$c_{\rm HB} + c_{\rm B} = -\frac{m_W^2}{2\Lambda^2} f_{\rm B}$$
$$c_{\rm HB} + c_{\rm HW} = \frac{m_W^2}{\Lambda^2} f_{\rm BW}$$
$$c_{\rm HB} - 4c_{\gamma} = \frac{m_W^2}{\Lambda^2} f_{\rm BB}$$

	I I	
g_{hgg}	$c_{lpha}\kappa_{Hgg}g_{Hgg}$	$g_H - rac{4ar c_g g_s^2 v}{m_W^2}$
$ ilde{g}_{hgg}$	$s_lpha\kappa_{Agg}g_{Agg}$	$-\frac{4\tilde{c}_g g_s^2 v}{m_W^2}$
$g_{h\gamma\gamma}$	$c_{lpha}\kappa_{H\gamma\gamma}g_{H\gamma\gamma}$	$a_H - rac{8gar{c}_\gamma s_W^2}{m_W}$
${ ilde g}_{h\gamma\gamma}$	$s_{lpha}\kappa_{A\gamma\gamma}g_{A\gamma\gamma}$	$-rac{8g ilde{c}_\gamma s_W^2}{m_W}$
$g^{(1)}_{\scriptscriptstyle hzz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{HZZ}$	$\frac{2g}{c_W^2 m_W} \left[\bar{c}_{HB} s_W^2 - 4 \bar{c}_\gamma s_W^4 + c_W^2 \bar{c}_{HW} \right]$
$ ilde{g}_{hzz}$	$\frac{1}{\Lambda} s_{\alpha} \kappa_{AZZ}$	$\frac{2g}{c_W^2 m_W} \left[\tilde{c}_{HB} s_W^2 - 4 \tilde{c}_\gamma s_W^4 + c_W^2 \tilde{c}_{HW} \right]$
$g^{(2)}_{\scriptscriptstyle hzz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial Z}$	$\frac{g}{c_W^2 m_W} \Big[(\bar{c}_{HW} + \bar{c}_W) c_W^2 + (\bar{c}_B + \bar{c}_{HB}) s_W^2 \Big]$
$g^{(3)}_{\scriptscriptstyle hzz}$	$c_{lpha}\kappa_{ m SM}g_{HZZ}$	$\frac{gm_W}{c_W^2} \left[1 - \frac{1}{2}\bar{c}_H - 2\bar{c}_T + 8\bar{c}_\gamma \frac{s_W^4}{c_W^2} \right]$
$g^{(1)}_{\scriptscriptstyle haz}$	$c_{lpha}\kappa_{HZ\gamma}g_{HZ\gamma}$	$\frac{gs_W}{c_W m_W} \left[\bar{c}_{HW} - \bar{c}_{HB} + 8\bar{c}_{\gamma} s_W^2 \right]$
$ ilde{g}_{haz}$	$s_lpha\kappa_{AZ\gamma}g_{AZ\gamma}$	$\frac{gs_W}{c_W m_W} \left[\tilde{c}_{HW} - \tilde{c}_{HB} + 8\tilde{c}_{\gamma} s_W^2 \right]$
$g^{(2)}_{\scriptscriptstyle haz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial\gamma}$	$\frac{gs_W}{c_W m_W} \Big[\bar{c}_{HW} - \bar{c}_{HB} - \bar{c}_B + \bar{c}_W \Big]$
$g_{\scriptscriptstyle hww}^{(1)}$	$\frac{1}{\Lambda}c_{lpha}\kappa_{HWW}$	$rac{2g}{m_W}ar{c}_{HW}$
$ ilde{g}_{hww}$	$rac{1}{\Lambda} s_lpha \kappa_{AWW}$	$rac{2g}{m_W} ilde{c}_{HW}$
$g^{(2)}_{{}_{hww}}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial W}$	$\frac{g}{m_W} \left[\bar{c}_W + \bar{c}_{HW} \right]$