

H.E.S.S. multi-messenger and real-time follow-up observations

Fabian Schüssler (Irfu/CEA-Saclay) H.E.S.S. multi-messenger contact

The Lake Baikal Three Messenger Conference 29/08-03/09/2016

The H.E.S.S. multi-messenger and GRB team

A. Balzer, M. Backes, E. Bissaldi, F. Brun, P. Brun, W. Domainko, M. Füssling, C. Hoischen, T. Garrigoux, J.-P. Lenain, I. Lypova, A. Mitchell, P. O'Brien, S. Ohm, R.D. Parsons, G. Pühlhofer, A. Reimer, G. Rowell, F. Schüssler, P.H.T. Tam, S. Wagner

+ partners from IceCube, ANTARES, Virgo/Ligo, Parkes, etc.

The H.E.S.S. multimessenger program

- Cosmic rays
 - no time correlation (except neutrons): waiting for a small-scale excess ;-)
- Gravitational waves
 - major breakthrough in 2015 thanks to Advanced Virgo/Ligo
 - H.E.S.S. member of the Virgo/Ligo EM follow-up effort since early 2014
 - follow-up difficult due to large localization uncertainties
 - important input from additional EM detection, galaxy catalogs, etc.
 - benefit from large FoV

Neutrinos

- ROIs
 - neutrino hotspots
 - IceCube HESE events

ToOs

Multi-messenger program: Neutrino hotspots

- Antares hotspot
 - 2.2σ excess (Adrian-Martinez et al., APJ 760 (2012) 53)
 - 2h of H.E.S.S. observations in 2013 ruling out close-by source

S. Adrian-Martimez (ANTARES Collaboration) APJ 760 (2012) 53

FS et al., ICRC 2013, arXiv:1307.6074

10

10-2

10-3

10

Multi-messenger program: IceCube HESE tracks

- H.E.S.S. observations of IceCube High Energy Starting Events
 - track like events (angular uncertainty < FoV)</p>
 - H.E.S.S. visibility + constrains by other observations
 - high energy, etc.

IceCube events: examples

IceCube Event 5

- deposited energy: 71.4⁺⁹-9 TeV
- Ra=110.6deg / Dec=-0.4deg

IceCube Event 45

- deposited energy: 429.9^{+57.4}-49.1 TeV
- Ra=219deg / Dec=-86.3deg

IceCube HESE tracks: H.E.S.S.

FS et al., ICRC 2015, arXiv:1509.03035 FS et al., Gamma 2016

IceCube 5

IceCube 18

IceCube 44

IceCube 45

Right Ascension (J2000)

Fabian Schüssler

BAIKAL 2016

IceCube HESE tracks: H.E.S.S.

H.E.S.

FS et al., ICRC 2015, arXiv:1509.03035 FS et al., Gamma 2016

IceCube HESE tracks: Fermi-LAT

FS et al., ICRC 2015, arXiv:1509.03035 FS et al., Gamma 2016

- Event 5 + 18: period 08/2008-05/2015; P7Rep, 100MeV-300GeV
- Event 44 + 45: period 08/2008-05/2016; Pass8, 100MeV-300GeV

Example: Event 44

IceCube HESE tracks: Fermi-LAT

FS et al., ICRC 2015, arXiv:1509.03035 FS et al., Gamma 2016

- Event 5 + 18: period 08/2008-05/2015; P7Rep, 100MeV-300GeV
- Event 44 + 45: period 08/2008-05/2016; Pass8, 100MeV-300GeV

Example: Event 44

IceCube HESE tracks: Limits

FS et al., ICRC 2015, arXiv:1509.03035 FS et al. Gamma 2016

IceCube Event 44 Example: Event 44 E² dN/dE [TeV m⁻² s⁻¹] preliminary 10 10 10^{-8} 3FGL J2227.8+0040 10⁻⁶ H.E.S.S. 10⁻¹⁰ Fermi-LAT IC-HESE: neutrinos z=0.1 IC-HESE: gamma-rays z=0.5 z=0.01 10^{-11 L} 1 I MI 11111 10^{-3} 10⁻² 10⁻⁴ 10⁻¹ 10² 10 1 Energy [TeV]

IceCube HESE tracks: Limits

FS et al., ICRC 2015, arXiv:1509.03035 FS et al. Gamma 2016

IceCube HESE tracks: Limits

FS et al., ICRC 2015, arXiv:1509.03035 FS et al. Gamma 2016

Future of the H.E.S.S. Multi-messenger program: alerts and ToOs

- Interpretation of potential gamma-ray source within the neutrino error box difficult (has to rely on basic energetics and follow-up observations)
- Space and time correlations would provide "smoking gun" signal for joint emission processes => CR interaction/acceleration

H.E.S.S. II: ToO follow-up performance

- main design principles of the H.E.S.S. 28m telescope
 - large photon collection area → 614 m² mirror area (largest IACT worldwide)
 - rapid response time

H.E.S.S. II: ToO follow-up performance

- main design principles of the H.E.S.S. 28m telescope

 - rapid response time

- ToO+DAQ re-organization in 2014/2015
 - reaction time dominated by slewing: O(60s)

 Details in the next talk by Clemens Hoischen

First H.E.S.S. reaction to Multi-messenger alerts and ToOs

IceCube

- real-time alerts on HESE + EHE events
- expected delays O(10min)

ANTARES

- online reconstruction and rapid alert emission: TAToO (Ageron et al., APP 35 (2012) 530)
- delays O(10s)

First H.E.S.S. reaction to Multi-messenger alerts and ToOs

IceCube

real-time alerts on HESE + EHE events

expected delays O(10min)

First follow-ups (see Clemens talk)

ANTARES

- online reconstruction and rapid alert emission: TAToO (Ageron et al., APP 35 (2012) 530)
- delays O(10s)

Antares/Swift ATEL: ANT150901

- 2015-09-01: Antares/TAToO alert to optical telescopes and Swift
- 2015-09-03: Swift detection of unknown, bright, variable X-ray source (ATEL 7987)
- 2015-09-03: H.E.S.S. follow-up
 - 1.5h of observations
 - Φ(E>320GeV, 99%CL) < 2.4 x 10⁻⁷ m⁻² s⁻¹

GRB follow-up with H.E.S.S.

- extensive follow-up program during H.E.S.S. phase I (e.g. A&A 495, 505-512 (2009))
- follow-up speed significantly increased with H.E.S.S. II
 - rapid slewing speed
 - fully automatic repositioning after the reception of a GCN alert
 - dedicated operation mode (e.g. data taking starts as soon as source enters the FoV)
 - GRBs have highest ToO priority (following all accessible alerts)

GRB follow-up: first results

- strict data blinding procedure fixing reconstruction, cuts, analysis strategy, etc.
- GRB140818B
 - RA= +18h 04m 35s ; Dec=-01d 21' 40" (J2000)
 - T0: 18:44:16 UTC
- H.E.S.S. observations
 - starting 18:45:42 UT (<2min after the GRB)</p>
 - mono analysis optimized for low energies

GRB follow-up: first results

- strict data blinding procedure fixing reconstruction, cuts, analysis strategy, etc.
- GRB140818B
 - RA= +18h 04m 35s ; Dec=-01d 21' 40" (J2000)
 - T0: 18:44:16 UTC
- H.E.S.S. observations
 - starting 18:45:42 UT (<2min after the GRB)</p>
 - mono analysis optimized for low energies

GRB follow-up: first results

- strict data blinding procedure fixing reconstruction, cuts, analysis strategy, etc.
- GRB140818B
 - RA= +18h 04m 35s ; Dec=-01d 21' 40" (J2000)
 - T0: 18:44:16 UTC
- H.E.S.S. observations
 - starting 18:45:42 UT (<2min after the GRB)</p>
 - mono analysis optimized for low energies

Run	Time since T0 [min]	Integral Flux (E>100GeV) [m ⁻² s ⁻¹]
1	2-30	3.9e-11
2	31-59	2.6e-11
3	60-88	5.1e-11
4	89-117	1.8e-11

BAIKAL 2016

Fast Radio Bursts

strong, millisecond radio burst of possibly extragalactic origin
H.E.S.S. takes part in the SUPERB project @ Parkes
online searches for FRBs and other radio transients

Fabian Schüssler

FRB150418

H.E.S

- detected 2015 April 18 04:29:07.056 UTC at SUPERB@Parkes
- ATCA: fading radio afterglow during ~6days

FS et al., Gamma 2016

Declination (J2000) 81

-19°

-20°

H.E.S.S.

FRB150418

FRB150418

- detected 2015 April 18 04:29:07.056 UTC at SUPERB@Parkes
- ATCA: fading radio afterglow during ~6days
 - optical identification of galaxy at z=0.492
- H.E.S.S. observations the night after the burst
 - delay: ~14.5h

H.E.S

- no VHE afterglow detected
- $\Phi(E>350 \text{GeV}) < 1.3 \times 10^{-8} \text{ m}^{-1} \text{ s}^{-1} (E^{-2}, 99\% \text{ C.L.})$

Gravitational Waves

- Second physics run of Advanced LIGO/Virgo starting soon
- Ligo only: localization typically poor O(100 deg²)
- H.E.S.S. part of the EM follow-up program since 2014
- rapid slewing, relatively large FoV
- follow-up decision on case-by-case basis

Summary

- H.E.S.S. phase II: lower energy threshold and rapid response
- Multi-messenger program
 - Neutrinos
 - hotspot + HESE source searches
 - ToO programs starting
- Follow-up of alerts and ToOs
 - GRBs
 - improved performance: reduced response time
 - highest priority observations
 - Fast Radio Bursts
 - Gravitational Waves

