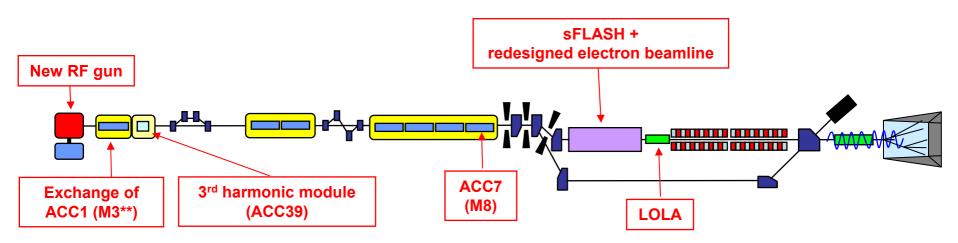


Beschleuniger-Betriebsseminar Grömitz, November 17-20, 2008



FLASH Upgrade 2009

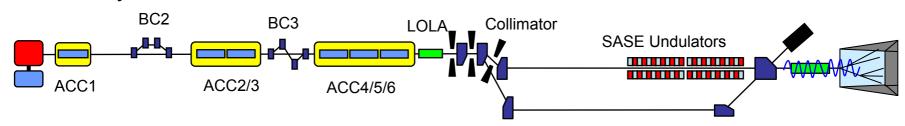
Katja Honkavaara

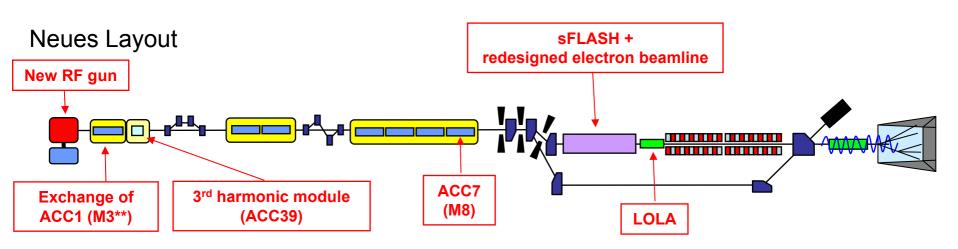
Ausbau 2009

Neu

- 3.9 GHz (dritte Harmonische) Beschleunigungsmodul (ACC39)
- Siebtes Beschleunigungsmodul (ACC7)
 - Umzug LOLA (transverse deflecting cavity)
- sFLASH (seeding Experiment)
 - Umbau der kompletten Strecke zwischen Kollimator und SASE-Undulatoren (~40 m)

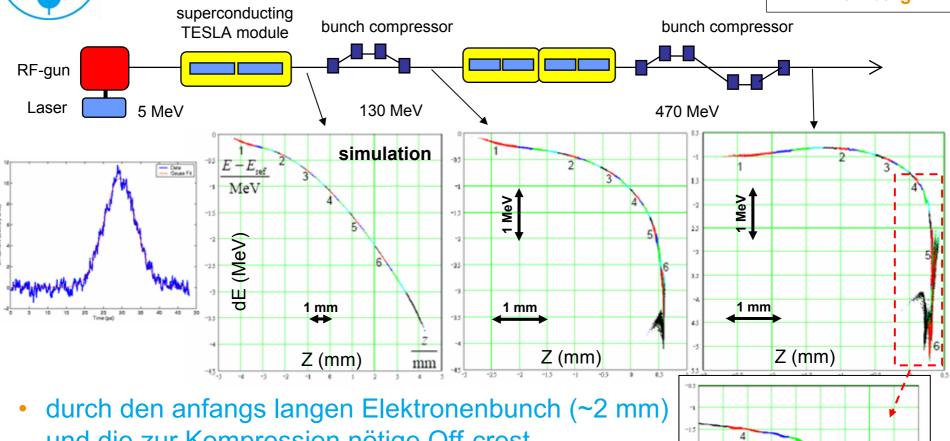
Umbau

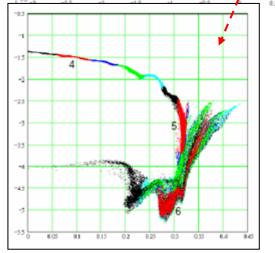

- Austausch erstes Beschleunigungsmodul (ACC1)
- Austausch RF-Gun
- RF-Stationen 2 und 3
 - neue Modulatoren
- RF-Wellenleiterverteilung



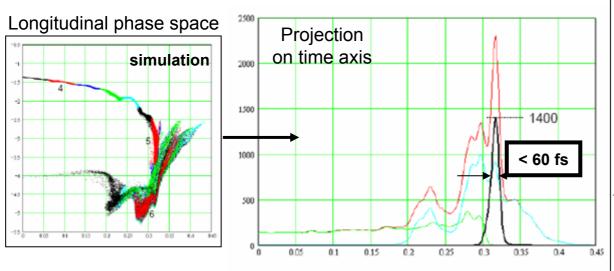
Linac Layout

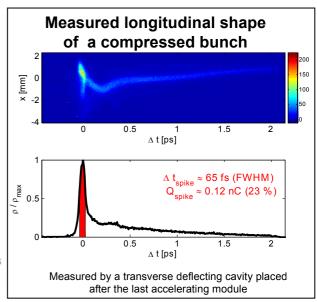
Aktuelles Layout





Longitudinaler Phasenraum

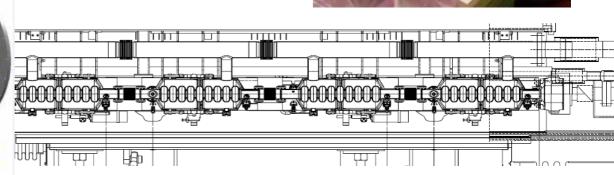

- durch den anfangs langen Elektronenbunch (~2 mm und die zur Kompression nötige Off-crest-Beschleunigung im ersten Beschleunigungsmodul entsteht eine
- → Krümmung des longitudinales Phasenraums
- → nichtlineare longitudinale Bunchkompression



Longitudinale Bunchform

- erzeugt werden ultra-kurze Spitzen mit hoher Ladungsdichte (< 60 fs fwhm bzw. etwa 2 kA Spitzenstrom)
 - → Femtosekunden-Modus
- es ist schwierig die relevanten Strahlparametern zu messen
 - → die Standard-Strahldiagnose misst die projektierten Parameter
 - → empirisches Tuning ist erforderlich um eine gute SASE Qualität zu erreichen

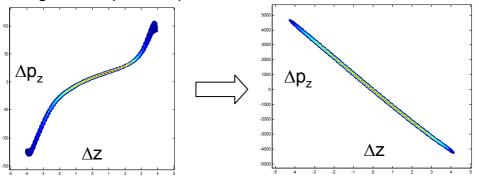
3.9 GHz Modul – ACC39



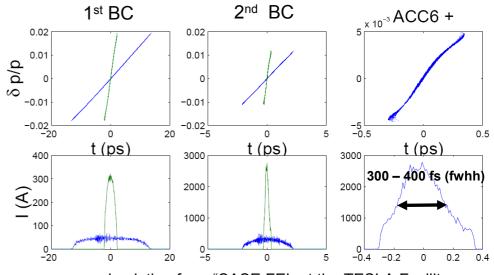
- Vier supraleitende Resonatoren mit je neun Zellen
- Dritte Harmonische: 3.9 GHz
- wird nach dem ersten Beschleunigungsmodul eingebaut
- beinhaltet: RF-Systeme (Klystron, Modulator), Wellenleiter

und LLRF-Steuerung

- Kollaboration FNAL / DESY
- → Vortrag von Elmar Vogel



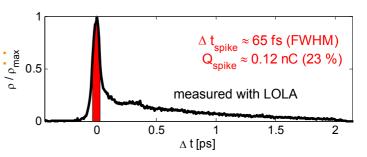
Erwartete Bunchform

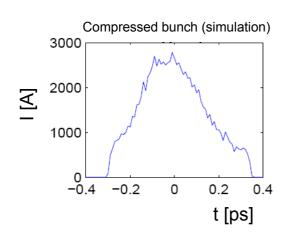


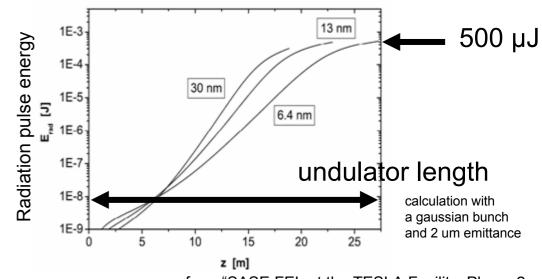
- Linearisierung des longitudinalen Phasenraums
 - → mehr regelmäßig Form des komprimierten Bunches

Longitudinal phase space without and with 3.9 GHz Module

Elektronenbunchlänge:
 50 µm (170 fs) sigma


simulation from "SASE FEL at the TESLA Facility, Phase 2, June 2002, TESLA FEL 2002-01"


Erwartete SASE Pulsenergie



- derzeit: Femtosekunden-Modus
 - nur ein Teil des Bunches trägt zum Lasen bei:
 der Anteil mit hohem Spitzenstrom und
 kleiner Emittanz

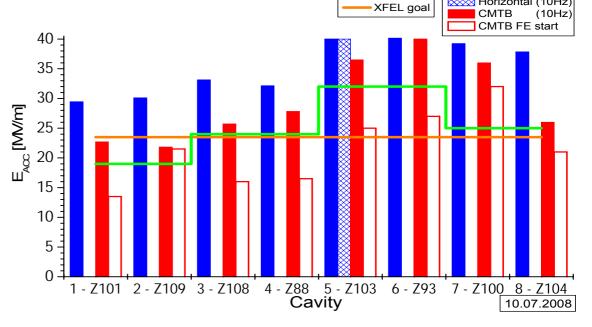
- mit ACC39: regelmäßige Bunchform
 - der gesamte Bunch (1 nC) trägt zum Lasen bei

from "SASE FEL at the TESLA Facility, Phase 2, June 2002, TESLA FEL 2002-01"

Laufende Studien

- Phasenstabilität
- Koppler-Kicks und die Auswirkung auf die Emittanz
- Betriebsmoden:
 - Lang-Puls-Modus (~ 200 fs) mit ACC39
 - Lasen des gesamten Bunches (~1 nC)
 - Femtosekunden-Modus
 - ACC39 aus: wie bisher
 - mit ACC39: Erzeugung des hohen Spitzenstroms mit niedriger Ladung
 - denkbar sind auch Moden zwischen den beiden Extremen
- muss experimentell untersucht werden
 - → wir erwarten eine lange Inbetriebnahmezeit

Strahlenergie-Erhöhung

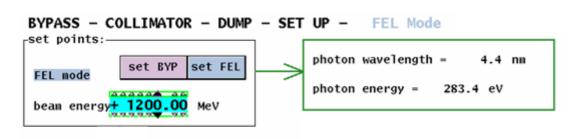


Cavity tests:

FLASH

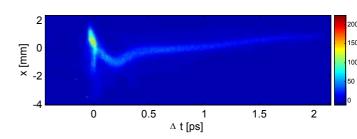
- Einbau siebtes Beschleunigungsmodul (ACC7): Modul 8
 - Ziel: Erhöhung der Energie des Elektronenstrahls bis zu ~ 1.2 GeV
 - Modul 8 ist im CMTB (Cryo-Module Test Bench) getestet worden
 - durchschnittlicher Betriebs-Gradient ~ 25 MV/m
 - mit optimierter Wellenleiterverteilung

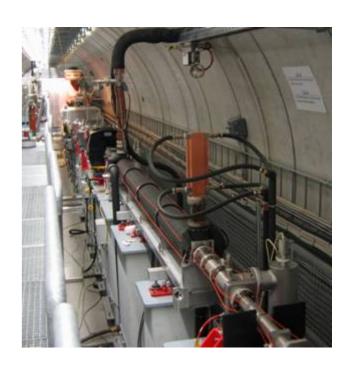
→ Vortag von Denis Kostin



Erwartete SASE Parameter

- Erwartete Wellenlänge für die Energie von 1.2 GeV: 4.4 nm
- SASE-Pulsenergie hängt von den erreichten Elektronstrahl-Parametern ab
 - Sättigung mit Wellenlängen unter 6 nm ist mit der jetzigen Undulatorlänge nicht garantiert
 - Wenn nötig, kann später ein siebtes Undulatormodul installiert werden



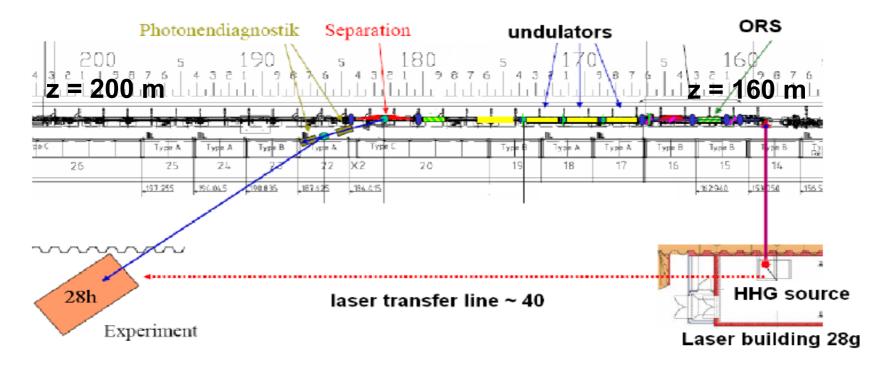


LOLA

- LOLA (transverse deflecting cavity = transversal ablenkender Resonator) ist ein wichtiges Instrument um die longitudinale Bunchstruktur zu vermessen
 - → insbesondere wichtig für die Inbetriebnahme des 3.9 GHz Moduls (ACC39)
- Zurzeit an der Stelle von Modul ACC7
 - → Umzug nötig
 - → neuer Ort: vor den SASE-Undulatoren
- mit LOLA zieht um:
 Wellenleiter (Verlängerung), Verkabelung,
 Diagnose (Schirm + Kamera), Kicker
- Ein kleiner Dump ist nötig um die SASE-Undulatoren zu schützen

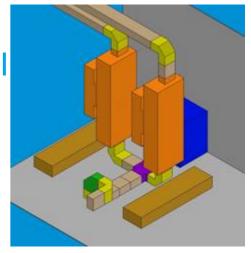
Austausch ACC1

- Erstes Beschleunigungsmodul (ACC1) wird mit Modul 3**
 (Kryo-Modul 3* mit neue Resonatoren) ausgetauscht
- Motivation:
 - erhöhter Gradient der vier letzten Resonatoren (~ 25 MV/m)
 - um den Energieverlust durch ACC39 zu kompensieren
 - reduzierter Dunkelstrom
 - zurzeit hat Resonator 7 eine hohe Feldemission und ist deswegen abgeschwächt
 - Piezo-Tuner für jeden Resonator
 - besser Qualität langer Bunchzüge



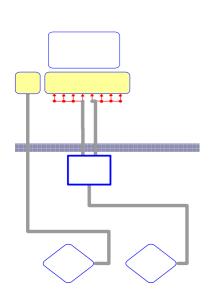
sFLASH

- Experiment für induzierte SASE-FEL Strahlung ("seeding")
 → Vortrag von Velizar Miltchev
- sFLASH-Undulatoren und andere Komponenten werden zwischen dem Kollimator und den SASE-Undulatoren installiert → völlig neue Elektronenstrahlstrecke ~ 40 m



Austausch RF-Gun

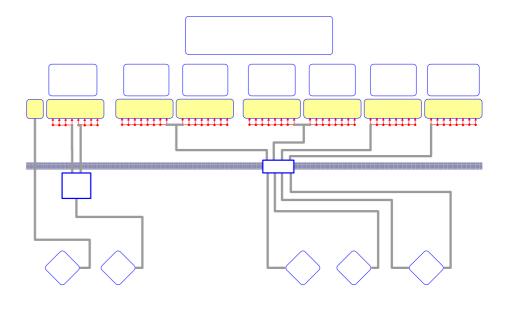
- Motivation:
 - RF-Gun im Dauerbetrieb die letzten 5 Jahre
 - → Alterungseffekte, hoher Dunkelstrom
 - 10 MW Betrieb
- neue CO₂-gereinigte RF-Gun
 - getestet bei PITZ
- zwei Wellenleiterarme und zwei Zirkulatoren sowie direktionale Koppler werden im Tunnel installiert
 - Voraussetzung für einen 10 MW Betrieb
- Feedback mit zwei Wellenleiterarmen wird bei PITZ entwickelt



Umbau RF-Stationen

- RF-Stationen 2 and 3 (ACC1 and RF-Gun)
 - alte Fermilab-Modulatoren (in Betrieb seit 10 Jahren) werden durch neue Modulatoren ersetzt
 - → bessere Zuverlässigkeit, einfacherer Betrieb und Wartung
 - Vorbereitung des Betriebs mit einem 10 MW Klystron für die RF-Gun

Katja Honkavaara, Grömitz, Nov-2008



Umbau RF-Wellenleiterverteilung

- eine zusätzliche RF-Station ist für den Betrieb mit ACC7 nötig
 - Modulator 6 wird zurzeit für Wellenleitertests benutzt
- optimierte Wellenleiterverteilung für ACC7 um die höchst mögliche Strahlenergie zu erreichen
 - RF-Leistung für jeden Resonator individuell angepasst
 - XFEL-Typ wie ACC6

Katja Honkavaara, Grömitz, Nov-2008

Weitere Umbauten

- XFEL BPM Teststand
 - wird zwischen SASE-Undulatoren und Infrarot-Undulator installiert
- THz- Experimente
 - Mögliches Upgrade des BC3 Experiments
 - Umbau des Experiment um z=140 m wegen des Einbaus von ACC7
 - Möglicherweise ein neues Interferometer an der neuen LOLA Position
- Modifikationen der IR- und der FEL-Photon-Strahlführung sowie der Photonendiagnose
 - noch nicht bestätigt

Zeitplan und Organisation

- Umbau beginnt am 7. September 2009
- Länge: etwa 5 Monate
 - detaillierte Planung in Arbeit
- Inbetriebnahme: etwa 2 3 Monate
- Beginn der 3. FEL-Nutzerperiode: Frühsommer 2010
- Koordination:
 - Gesamtleitung: Katja Honkavaara
 - technische Koordination: Karsten Klose, Ben Polzin, Peter Hopf
 - Zeitpläne: Armin Brand
- Besprechung: montags 10:30 h, 24/200
- Webpage: flash.desy.de/upgrade_2009
- Mailing-list: flash-upgrade09@desy.de