Rencontres de Moriond EW '16

- Conference Highlights
- Personal Highlights
- ttH

Johannes Hauk DESY

DESY LHC Physics Discussion 04.04.2016

Conference Highlights

Jubilee – 50th Anniversary

- Retrospect experimental and theoretical developments
- From cloud and bubble chambers, and counters (scintillators)...
- …via spark chambers…
 - Automation of data acquisition
- …to wire chambers…
 - Automation of data analysis
 - Event displays of high importance (used to debug reconstruction)
- …and silicon detectors for vertexing
- From analytic S-matrix theory...
 - A series of axioms formulated directly on scattering amplitudes
- …to quantum field theory, and the Standard Model

Jubilee – 50th Anniversary

Central advise

Physics programme sometimes hard to foresee

 Mistakes were made in choice of design and technology, even if only few years between concept and data taking

 \rightarrow Keep flexibility wherever possible

- Theory revolution in the 60s and early 70s, but nobody realised it took place
 - Breakthrough not along mainstream physics, mostly rejected by champions of previous revolutions
 - \rightarrow Do not ask experts which way to go, find your own way

Gravitational Waves – LIGO/VIRGO

- Detection on Sep 14, 2015 at 11:51 CEST
 - Where were you?
- Interferometers with 4 km beam length
 - Measure length deformation of 0.5% size of proton
- > Coincidence of two interferometers

Allows coarse position estimate

Gravitational Waves – Measurement

Measured spectrum well reproduced by calculation

Gravitational Waves – Interpretation

- > Binary black hole merger
- Many parameters obtained from fit
 - 2 black holes of 36 and 29 solar masses inspiral with ~0.5 c
 - Energy radiated as gravitational waves
 3 solar masses
- New window to sky
 - Complementary to photons, neutrinos, cosmic ray particles
- > Within 1 month, >100 citations

ATLAS Diphoton Excess

- > Updated preliminary results
- > 2 dedicated searches for resonance, optimised selection

ATLAS Diphoton Excess

Event properties compared to simulation in excess region and sidebands

- Similar distributions, within large statistical uncertainties
- Background-only p-value scan versus resonance mass and width

ATLAS Diphoton Excess

Re-analysis of 8 TeV data, latest Run 1 calibration, 13 TeV analysis method

CMS Diphoton Excess

- > Agnostic search for spin-0 and spin-2
- > Updated preliminary results, with improved calibration, B-field off data

CMS Diphoton Excess

> Adding B-field off data

- Better intrinsic photon energy resolution (no spread)
- Worse tracker isolation, vertex association

CMS Diphoton Excess

- Event properties in signal region consistent with sidebands
- Compatibility of magnet on/off data, and 8/13 TeV

Lowest p-value at ~750 GeV (760 for 13 TeV data only), narrow width

Local/global Z = 3.4σ / 1.6σ (2.9σ / < 1 for 13 TeV data only)

Personal Highlights

Neutrinos

Reactor neutrinos – Short-baseline and long-baseline experiments

- Could come from mis-modelling, need better understanding
 - \rightarrow Very short-baseline projects

3 ton SoLid experiment deployed 5.5 m from the BR2 reactor core

Flavour Physics

Flavour anomalies from B factories and LHCb

Measure ratios of semileptonic B decays, robust SM predictions

R_{D*} = 0.302 ± 0.030_{stat} ± 0.011_{syst} [SM: 0.252 ± 0.003, 1.6σ]

LHC Searches at 13 TeV – SUSY, QBH, ...

- Strong cross section increase for certain processes, but nothing found
- > Also, no 8 TeV anomaly confirmed
- Continue setting limits

Standard Candles at 13 TeV

- Inclusive W and Z production, cross-section ratios (cancel out systematics)
- > Also important for: verify and calibrate lepton reconstruction performance

Top as Gluon Luminometer

- Dilepton: ratio to Z tests qq/gg ratio
 - Could do similar for I+jets with the W

 $R_{t\bar{t}/Z}^{\text{CT10nnlo}} = 0.427^{+0.022}_{-0.013} \text{ (PDF)} ^{+0.012}_{-0.016} \text{ (QCD scale)} ^{+0.005}_{-0.004} (\alpha_s)$

Top differential Cross Sections

- Precise measurements depend crucially on understanding of ME+PS-based predictions
 - Largest uncertainties from choice of hadronizer (Pythia8 vs Herwig++) and NLO generator (aMC@NLO vs Powheg)
- > Top p_T better described at NNLO (softer in data wrt. NLO+PS)

NLO effects for Top

- Predictions should go beyond simple approximation of factorising top production and decays
 - Upper panel: distribution and scale dependence bands
 - Lower panel: differential K-factor
 - be⁺ pair that returns the smallest invariant mass

$$M_{be^+}=\sqrt{m_t^2-m_W^2}pprox 153~{
m GeV}$$

- If both top and W decay on-shell
 → end-point given by sharp cut
- Additional radiation & off-shell effects introduce smearing
- Highly sensitive to the details of the description of the process

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$$

Top at Tevatron

Longitudinal and transverse polarisation, sensitive to P-, CP-violation

- All found in agreement with SM
- Forward-backward asymmetry
 - Tension with SM gone, NNLO and measurements converge

top

Higgs Boson Production at LHC

Production mechanims with very different topologies and cross sections

Higgs Boson Production at LHC

> In SM, top-Higgs Yukawa coupling strongest ($Y_T \approx 1$)

Higgs Boson Production at LHC

Indirect constraints from loops, ttH only possibility of direct measurement

ttH Production

Strong increase of cross section with center-of-mass energy (m_H = 125 GeV)

ttH (NLO)	Cross section	
7 TeV	89 fb	
8 TeV	133 fb	x3.8
13 TeV	507 fb	

Luminosity of 2015 dataset 2.3 – 2.7 fb⁻¹

- Equivalent to ≈ 50% of 8 TeV statistics
- > Dominant background tt+X
 - Similar increase in cross sections

ttH Decays – Very complex Final States

- > $ttH(\gamma\gamma)$: leptonic (dileptons, l+jets), hadronic
- ttH(multileptons): dileptons, I+jets categorisation via lepton multiplicity
 - multileptons = leptonic decays of $H \rightarrow WW^*$, ZZ^* , $\tau\tau$
- ttH(bb): dileptons, I+jets

ttH – Knowledge from Run 1

- Combination of all Higgs analysis channels
- > μ_{ttH} dominated by: ttH($\gamma\gamma$), ttH(multilepton), ttH(bb)

	μ (ttH)				
ATLAS	1.9 +0.8 -0.7				
CMS	2.9 +1.0 -0.9				
Combined	2.3 +0.7 -0.6				

Observed (expected) significance 4.4σ (2.0 σ)

ttH(γγ)

- > Tiny branching ratio, but clean resonant signature
- Main backgrounds
 - tt+γγ, tt+jets (→fake photons)
- > Integral part of inclusive $H \rightarrow \gamma \gamma$
 - Suppression of fake photons and backgrounds
 - Excellent diphoton mass resolution
- Categorise via leptonic, hadronic
 - Diphoton triggers and offline selection
 - ≥1, 0 leptons
 - ≥2, ≥5 jets
 - ≥1 b-tag

$ttH(\gamma\gamma)$ – Signal Separation

> Same strategy as for inclusive $H \rightarrow \gamma \gamma$

- Search for resonance in m_{γγ}
- Smooth fit functions, several functional forms
 - Control regions by inverting photon ID + loosened event selection

- > High-purity ttH selection
 - Statistically limited, small impact of systematics

$$\hat{\mu}_{\rm obs} = 3.8^{+4.5}_{-3.6}$$

ttH(multileptons)

- Smallest irreducible background, focus on reducible
 - tt+V, tt+jets (→fake leptons)
- > Categorise 2 same-sign (SS) leptons, ≥3 leptons
 - Lepton triggers and offline selections
 - ≥4, ≥2 jets
 - ≥1 b-tag
 - Sub-categories: lepton flavour, lepton charge, presence of τ_h , presence of 2 b-tags
- Separation of prompt leptons from fakes via Boosted Decision Tree (BDT)
- Modelling of fake lepton backgrounds from control region relaxing lepton selection
 - Mis-identification (fakes)
 - Charge mis-reconstruction of electrons (flips)

ttH(multileptons) – Signal Separation

Johannes Hauk (DESY) | Moriond EW'16 | 04.04.2016 | Page 33

10

ttH(bb)

tt+jets overwhelming background for ttH(bb)

- Especially tt+bb irreducible, theoretically challenging
- > Categorise via I+jets, dilepton
 - Lepton triggers and offline selections
 - = 1, =2 opposite-sign (OS) leptons
 - ≥4, ≥3 jets
 - ≥2 b-tags

- Limited mass resolution for H→bb, jet combinatorics
 - Dilepton: minimal non-tt backgrounds, minimal jet combinatorics
 - I+jets: high statistics

ttH(bb) – Event Classification

- Classify by number of jets, number of b-tags
 - Background-like: constrain systematic uncertainties
 - Signal-like: (close to) topology of ttH
- Boosted category for first time (I+jets)
 - Fat-jet algorithm
 - Identify hadronic top and Higgs using substructure information
- > 13 orthogonal categories

In each category, BDT with different variables

Johannes Hauk (DESY) | Moriond EW'16 | 04.04.2016 | Page 36

- In I+jets, inclusion of Matrix Element Method (MEM)
 - Use tt+bb as background hypothesis, permute over jet-quark associations
 - MEM discriminant as input variable in 3 b-tag categories and boosted category

- In I+jets, inclusion of Matrix Element Method (MEM)
 - Use tt+bb as background hypothesis, permute over jet-quark associations
 - MEM discriminant as input variable in 3 b-tag categories and boosted category
 - 2D BDT-MEM analysis in ≥4 b-tag categories

ttH(bb) – Results

Combined fit of all categories

Outlook

- Much more data to come
 - Expect ≈30 fb⁻¹ in 2016
- ttH observation and Yukawa coupling measurement amongst priorities for Run 2 at LHC
 - Is ttH like in SM, reveals sings of new physics ?
- Key to find "hidden" loop contribution

ttH of importance throughout whole LHC era

ATLAS ttH at 8 TeV

- > Add ttH full hadronic channel, 8 jets with 4 b-tags
 - Highest BR, but the least signal purity
- Categorisation via number of jets, b-tags
- Data-driven background estimate from lower b-tag multiplicity
- New ttH combination

Conclusions

- > Many exciting topics, much more than covered here
- > Important times ahead, enough material for next 50 years of Moriond

Mass Resolution of Higgs Decays

- = Excellent resolution for $H \rightarrow ZZ^* \rightarrow 4I$, and $H \rightarrow \gamma \gamma$
- Poor mass resolution of H→bb

CMS

35

30

25

Events / 3 GeV

\s = 7 TeV, L = 5.1 fb⁻¹; \s = 8 TeV, L = 19.7 fb⁻¹

Data

Z+X

Zγ, ZZ

m_H = 126 GeV

Cross section of ttbb and ratio to ttjj – Run 1

Inclusive cross section (ratios) measured

7 TeV (jet p_T>20 GeV), dilepton

 $\frac{\sigma_{\text{ttbb}}}{\sigma_{\text{ttjj}}} = (3.6 \pm 1.1 \text{ (stat)} \pm 0.9 \text{ (syst)}) \%$ PAS-TOP-12-024

8 TeV (jet p_T>40 GeV), dilepton and l+jets

And calculated

jet <i>p</i> _T > 40 GeV					
ttbb/ttjj (NLO)	Cross-section ratio				
7 TeV	1.05%				
8 TeV	1.09%				
13 TeV	1.26%				
ttjj (NLO)	Cross section				
7 TeV	13.6 pb				
8 TeV	21.0 pb				
13 TeV	85.5 pb				
ttbb (NLO)	Cross section				
7 TeV	142 fb				
8 TeV	229 fb				
13 TeV	1078 fb				
JHEP 07 (2014) 135					

Differential Cross Sections of ttbb – Run 1

Differential cross sections of properties of additional b jets

- Shape comparisons to different simulations
- Comparison to full next-to-leading order (NLO) calculation

ttH(γγ) – Run 1

> Analysis of 7 TeV (1 inclusive channel), and 8 TeV (leptonic and hadronic)

ttH(multileptons) – Run 1

Categorise by 2, 3, 4 leptons

- Sub-categories for signal-like and background-like selections
- > BDT in 2 and 3 lepton categories, jet multiplicity in 4 lepton category

ttH(multileptons) – Run 1

> Mild signal excess in same-sign dimuon channel

ttH(bb) and ttH($\tau_{had}\tau_{had}$) – Run 1

- > Analysis channels dilepton, I+jets, hadronic τ 's
- Categorise by (# jets, # b-tags)
- > BDT analysis, optimised variables in each category

ttH – Results from Run 1

Combine all orthogonal channels for best fit of SM ttH cross section

ATLAS+CMS Combination – Run 1

Coupling strengths

ttH(bb) with Matrix Element Method – Run 1

> Analysis channels dilepton, I+jets

 Categorise by tt+hf, tt+lf using likelihood from b-tag discriminator values → Low/high purity categories

 $\mathcal{F}(\boldsymbol{\xi}) = \frac{f(\boldsymbol{\xi}|\boldsymbol{t}\bar{\boldsymbol{t}} + \boldsymbol{h}\boldsymbol{f})}{f(\boldsymbol{\xi}|\boldsymbol{t}\bar{\boldsymbol{t}} + \boldsymbol{h}\boldsymbol{f}) + f(\boldsymbol{\xi}|\boldsymbol{t}\bar{\boldsymbol{t}} + \boldsymbol{h}\boldsymbol{f})}$

Sub-categories by number of jets (in I+jets)

MEM analysis with tt+bb as background hypothesis

- Certain hypotheses for given number of jets
- Combination of 2 discriminants
 - Probability of ttH-like topology $P_{s/b} = \frac{w(\mathbf{y}|t\bar{t}H)}{w(\mathbf{y}|t\bar{t}H) + k_{s/b} w(\mathbf{y}|t\bar{t} + b\bar{b})}$
 - Probability of high b-jet multiplicity

$$P_{\mathrm{h/l}} = \frac{f(\boldsymbol{\xi}|\mathrm{t}\bar{\mathrm{t}} + \mathrm{h}\mathrm{f})}{f(\boldsymbol{\xi}|\mathrm{t}\bar{\mathrm{t}} + \mathrm{h}\mathrm{f}) + k_{\mathrm{h/l}}f(\boldsymbol{\xi}|\mathrm{t}\bar{\mathrm{t}} + \mathrm{l}\mathrm{f})}$$

ttH($\gamma\gamma$) – Challenges

- Require excellent diphoton mass resolution, suppression of fake photons and backgrounds
 - Good photon reconstruction and energy calibration
 - Vertex association
 - Photon ID via BDT
 - Diphoton classifier via BDT

ttH($\gamma\gamma$) – Diphoton BDT

Classify for

- Signal-like kinematic characteristics
- Good diphoton mass resolution events
- Photon-like values from photon identification BDT
- Should be mass independent

ttH($\gamma\gamma$) – Signal and Background Model

Signal

- Simulated mass points 120, 125, 130 GeV
- Fit distribution of Higgs mass with parametric model, including systematic variations
- Sum of up to 4 Gaussians
- Continuous interpolation for any mass point
- Normalisation from linear interpolation of efficiency x acceptance

Background

- Consider large set of candidate function families
- Treat choice of function as discrete parameter in likelihood fit
- Exclude low and high order functions
- Add penalty to account for number of floating parameters

Event Categories	SM 125 GeV Higgs boson expected signal yield							Bkg	
Event Categories	Total	ggH	VBF	WH	ZH	tīH	σ_{eff}	σ_{HM}	(GeV^{-1})
				<	\leq		(ĠeV)	(GeV)	
Untagged 0	2.08	76.19 %	10.06 %	7.45 %	3.98 %	2.32 %	1.25	1.17	0.93
Untagged 1	30.44	86.24 %	7.13 %	3.73 %	2.12 %	0.79 %	1.41	1.22	61.19
Untagged 2	43.36	91.16 %	4.80 %	2.39 %	1.29 %	0.36 %	1.86	1.50	165.52
Untagged 3	42.18	92.18 %	4.21 %	2.05 %	1.16 %	0.40 %	2.63	2.20	350.94
VBF Tag 0	3.00	35.28 %	63.48 %	0.68 %	0.19 %	0.36 %	1.61	1.24	1.57
VBF Tag 1	4.08	53.14 %	43.62 %	1.69 %	0.85 %	0.69 %	1.77	1.35	6.85
TTH Hadronic Tag	0.64	8.76 %	0.41 %	1.66 %	2.10 %	87.06 %	1.56	1.31	0.90
TTH Leptonic Tag	0.23	0.14 %	0.09 %	2.91 %	1.31 %	95.55 %	1.73	1.56	0.03
Total	126.00	86.92 %	7.87 %	2.62 %	1.45 %	1.14 %	1.94	1.49	587.92

$H \rightarrow \gamma \gamma$ Combination

Combination of all orthogonal analysis channels

ttH(multilepton) – Lepton Fake Rate

Lepton MVA

ID, kinematics, isolation, impact parameter, lepton-jet relations

Background fake leptons (jet mis-identification, heavy flavour decays)

- Control region inverting MVA ID requirement
- Apply transfer factor: probability for fake lepton to pass ID
- Fake rate measured (high-pt): QCD events triggered by single lepton paths
- Fake rate measured (low-pt): inclusive QCD events (μ), Z+I events (e)

> Charge mis-assignment of electrons from m_{ee} in SS and OS lepton pairs

ttH(multilepton) – Event Yields

	μμ	ee	еµ	3ℓ
tīH	1.53 ± 0.08	0.69 ± 0.05	2.27 ± 0.10	2.12 ± 0.09
ttW	3.22 ± 0.16	1.47 ± 0.11	4.95 ± 0.19	2.56 ± 0.14
$t\bar{t}Z/\gamma^*$	0.82 ± 0.03	1.14 ± 0.14	2.42 ± 0.17	3.75 ± 0.18
WZ	0.09 ± 0.05	0.06 ± 0.06	0.25 ± 0.11	0.33 ± 0.11
tttt	0.19 ± 0.03	0.11 ± 0.02	0.28 ± 0.03	0.22 ± 0.03
tZq	0.10 ± 0.06	0.00 ± 0.00	0.12 ± 0.13	0.44 ± 0.17
rare SM bkg.	0.06 ± 0.03	0.04 ± 0.04	0.13 ± 0.06	0.16 ± 0.59
non-prompt (data)	3.99 ± 0.38	3.58 ± 0.38	10.10 ± 0.65	8.08 ± 0.67
charge mis-ID (data)		1.11 ± 0.05	1.65 ± 0.05	
signal	1.53 ± 0.08	0.69 ± 0.05	2.27 ± 0.10	2.12 ± 0.09
all backgrounds	8.47 ± 0.42	7.52 ± 0.44	19.90 ± 0.73	15.55 ± 0.95
data	9	11	11	28

ttH(multilepton) – Signal Extraction in 2 SS Leptons

ttH(multilepton) – Results split by Flavour

ttH(multilepton) Categories

- > 16 sub-categories increase sensitivity due to different S+B composition
 - Lepton flavour: different background compositions, and fake contributions (charge flips only in electrons)
 - Lepton charge: Charge asymmetry of several backgrounds
 - Presence of 2 b-tags: Non-tt backgrounds
 - Presence of hadronic τ : ttH($\tau\tau$) with low backgrounds

Definition of tt+xx Processes in ttH(bb)

- Split inclusive tt+jets based on heavy-flavour content of additional jets
 - Presence of ghost b/c hadron clustered to generator jet
 - Additional jets defined by $p_T > 20 \text{ GeV}$, $|\eta| < 2.4$
- Processes: ttbb, ttb, tt2b, ttcc, tt+lf
 - ttbb and ttb in principle same process, well separated jets
 - \rightarrow Can be treated perturbatively
 - tt2b theoretically and experimentally different, collinear gluon splitting
 - → Mainly from parton shower, needs (arbitrary) cut-off, matter of tuning
 - ttcc inclusive for all processes with at least one additional c jet Similar issues as for b jets, but less relevant background
 - tt+lf: events without additional heavy-flavour jet

ttH(bb) Categories

- > 13 categories
 - 5 dilepton
 - 7 l+jets
 - 1 boosted (in I+jets)

ttH(bb) – Event Yields (I+jets)

Process	\geq 6 jets, 2 b-tags	4 jets, 3 b-tags	5 jets, 3 b-tags	\geq 6 jets, 3 b-tags
t t +lf	5359.3 ± 1226.3	2026.1 ± 651.4	1000.2 ± 352.9	589.5 ± 199.7
$t\overline{t} + c\overline{c}$	1722.2 ± 849.5	363.2 ± 190.9	368.1 ± 191.3	396.6 ± 209.5
t t +b	393.7 ± 188.2	203.1 ± 92.5	199.6 ± 90.8	170.8 ± 81.4
$t\bar{t}+2b$	165.2 ± 81.2	78.9 ± 38.0	87.2 ± 40.7	97.3 ± 46.8
$t\overline{t} + b\overline{b}$	226.4 ± 113.2	75.8 ± 35.3	114.1 ± 52.3	183.7 ± 86.7
Single Top	283.0 ± 49.0	115.3 ± 30.8	76.2 ± 19.5	47.5 ± 12.7
V+jets	130.5 ± 35.2	38.6 ± 17.8	22.8 ± 10.4	13.6 ± 6.4
$t\bar{t}+V$	43.5 ± 8.2	4.3 ± 1.2	6.4 ± 1.8	10.0 ± 2.7
Diboson	2.8 ± 1.3	2.1 ± 1.3	0.9 ± 0.5	0.2 ± 0.3
Total bkg	8326.7 ± 1788.6	2907.4 ± 836.5	1875.5 ± 534.7	1509.1 ± 423.7
tītH	29.6 ± 2.1	7.4 ± 1.0	10.9 ± 1.2	16.7 ± 2.1
Data	7185	2793	1914	1386
S/B	0.0036	0.0026	0.0059	0.011
Data/B	0.9 ± 0.2	1.0 ± 0.3	1.0 ± 0.3	0.9 ± 0.3
Process	1 jots > 1 b-tags	5 jote > 1 h-tage	> hiote > 1 h-ta	are boosted
Process	4 jets , $\geq 4 \text{ b-tags}$	5 jets, \geq 4 b-tags	\geq 6 jets, \geq 4 b-ta	ags boosted 45.1 ± 9.4
Process tt+lf	$4 \text{ jets}, \ge 4 \text{ b-tags}$ 17.8 ± 10.8 11.6 ± 8.2	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4	\geq 6 jets, \geq 4 b-ta 17.6 \pm 11.3 25.9 \pm 24.9	ags boosted 45.1 ± 9.4 21.8 ± 12.0
${}{}{}{}{}{}{}$	$4 \text{ jets}, \ge 4 \text{ b-tags}$ 17.8 ± 10.8 11.6 ± 8.2 8.4 ± 4.4	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7	≥ 6 jets, ≥ 4 b-ta 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9	$\begin{array}{r c} \hline ags & boosted \\ \hline 45.1 \pm 9.4 \\ 21.8 \pm 12.0 \\ 10.3 \pm 5.5 \\ \end{array}$
$ \hline $	$4 \text{ jets}, \ge 4 \text{ b-tags}$ 17.8 ± 10.8 11.6 ± 8.2 8.4 ± 4.4 3.5 ± 1.9	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7	≥ 6 jets, ≥ 4 b-ta 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9 12.3 ± 6.9	$\begin{array}{r c} \hline ags & boosted \\ \hline 45.1 \pm 9.4 \\ 21.8 \pm 12.0 \\ 10.3 \pm 5.5 \\ 12.3 \pm 6.6 \\ \end{array}$
$ \hline \hline Process \hline \hline t\bar{t}+lf t\bar{t}+c\bar{c} t\bar{t}+b t\bar{t}+2b t\bar{t}+b\bar{b} $	$4 \text{ jets}, \ge 4 \text{ b-tags}$ 17.8 ± 10.8 11.6 ± 8.2 8.4 ± 4.4 3.5 ± 1.9 10.1 ± 4.9	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9	\geq 6 jets, \geq 4 b-ta 17.6 \pm 11.3 35.9 \pm 24.9 20.0 \pm 10.9 12.3 \pm 6.9 73.4 \pm 36.6	$\begin{array}{r c} \hline ags & boosted \\ \hline 45.1 \pm 9.4 \\ 21.8 \pm 12.0 \\ 10.3 \pm 5.5 \\ 12.3 \pm 6.6 \\ 17.0 \pm 8.4 \\ \end{array}$
$ \hline \hline \hline \hline \hline \hline \hline \hline $	$4jets, \ge 4b-tags$ 17.8 ± 10.8 11.6 ± 8.2 8.4 ± 4.4 3.5 ± 1.9 10.1 ± 4.9 25 ± 1.1	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.2 ± 1.4	\geq 6 jets, \geq 4 b-ta 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9 12.3 ± 6.9 73.4 ± 36.6 5.5 ± 2.0	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
$ \hline \hline \hline \hline \hline $	$4 \text{ jets}, \ge 4 \text{ b-tags}$ 17.8 ± 10.8 11.6 ± 8.2 8.4 ± 4.4 3.5 ± 1.9 10.1 ± 4.9 2.5 ± 1.1 1.0 ± 0.8	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.3 ± 1.4 0.9 ± 0.8	$\geq 6 \text{ jets}, \geq 4 \text{ b-ta}$ 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9 12.3 ± 6.9 73.4 ± 36.6 5.5 ± 2.0 1.4 ± 0.7	ags boosted 45.1 ± 9.4 21.8 ± 12.0 10.3 ± 5.5 12.3 ± 6.6 17.0 ± 8.4 7.0 ± 1.7 25 ± 0.8
$ \hline \hline \hline \hline \hline \hline $	$\begin{array}{c} 4 \text{ jets,} \geq 4 \text{ b-tags} \\ 17.8 \pm 10.8 \\ 11.6 \pm 8.2 \\ 8.4 \pm 4.4 \\ 3.5 \pm 1.9 \\ 10.1 \pm 4.9 \\ 2.5 \pm 1.1 \\ 1.0 \pm 0.8 \\ 0.2 \pm 0.1 \end{array}$	$5jets, \ge 4b$ -tags 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.3 ± 1.4 0.9 ± 0.8 0.7 ± 0.2	$\geq 6 \text{ jets}, \geq 4 \text{ b-ta}$ 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9 12.3 ± 6.9 73.4 ± 36.6 5.5 ± 2.0 1.4 ± 0.7 1.6 ± 0.6	ags boosted 45.1 ± 9.4 21.8 ± 12.0 10.3 ± 5.5 12.3 ± 6.6 17.0 ± 8.4 7.0 ± 1.7 2.5 ± 0.8 0.0 ± 0.2
$ \hline \hline \hline \hline \hline \hline \hline $	$\begin{array}{c} 4 jets, \geq 4 b\text{-tags} \\ 17.8 \pm 10.8 \\ 11.6 \pm 8.2 \\ 8.4 \pm 4.4 \\ 3.5 \pm 1.9 \\ 10.1 \pm 4.9 \\ 2.5 \pm 1.1 \\ 1.0 \pm 0.8 \\ 0.3 \pm 0.1 \\ 0.0 \pm 0.0 \end{array}$	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.3 ± 1.4 0.9 ± 0.8 0.7 ± 0.3 0.1 ± 0.1	$\geq 6 \text{ jets}, \geq 4 \text{ b-ta}$ 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9 12.3 ± 6.9 73.4 ± 36.6 5.5 ± 2.0 1.4 ± 0.7 1.6 ± 0.6 0.0 ± 0.0	ags boosted 45.1 ± 9.4 21.8 ± 12.0 10.3 ± 5.5 12.3 ± 6.6 17.0 ± 8.4 7.0 ± 1.7 2.5 ± 0.8 0.9 ± 0.3
Process $t\bar{t}+lf$ $t\bar{t}+c\bar{c}$ $t\bar{t}+b$ $t\bar{t}+2b$ $t\bar{t}+2b$ $t\bar{t}+b\bar{b}$ Single TopV+jets $t\bar{t}+V$ Diboson	$\begin{array}{r} 4 \text{ jets,} \geq 4 \text{ b-tags} \\ 17.8 \pm 10.8 \\ 11.6 \pm 8.2 \\ 8.4 \pm 4.4 \\ 3.5 \pm 1.9 \\ 10.1 \pm 4.9 \\ 2.5 \pm 1.1 \\ 1.0 \pm 0.8 \\ 0.3 \pm 0.1 \\ 0.0 \pm 0.0 \end{array}$	$5jets, \ge 4b-tags$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.3 ± 1.4 0.9 ± 0.8 0.7 ± 0.3 0.1 ± 0.1	$\geq 6 \text{ jets}, \geq 4 \text{ b-ta}$ 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9 12.3 ± 6.9 73.4 ± 36.6 5.5 ± 2.0 1.4 ± 0.7 1.6 ± 0.6 0.0 ± 0.0	ags boosted 45.1 ± 9.4 21.8 ± 12.0 10.3 ± 5.5 12.3 ± 6.6 17.0 ± 8.4 7.0 ± 1.7 2.5 ± 0.8 0.9 ± 0.3 0.1 ± 0.1 117
$\hline \hline Process \\ \hline \hline t\bar{t}+lf \\ t\bar{t}+c\bar{c} \\ t\bar{t}+b \\ t\bar{t}+2b \\ t\bar{t}+2b \\ t\bar{t}+b\bar{b} \\ Single Top \\ V+jets \\ t\bar{t}+V \\ Diboson \\ \hline \hline Total bkg \\ \hline \hline \hline v = 1 \\ \hline v$	$\begin{array}{r} 4 jets, \geq 4 b\text{-tags} \\ 17.8 \pm 10.8 \\ 11.6 \pm 8.2 \\ 8.4 \pm 4.4 \\ 3.5 \pm 1.9 \\ 10.1 \pm 4.9 \\ 2.5 \pm 1.1 \\ 1.0 \pm 0.8 \\ 0.3 \pm 0.1 \\ 0.0 \pm 0.0 \\ \hline 55.2 \pm 23.0 \end{array}$	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.3 ± 1.4 0.9 ± 0.8 0.7 ± 0.3 0.1 ± 0.1 96.5 ± 37.6	$\geq 6 \text{ jets}, \geq 4 \text{ b-ta}$ 17.6 ± 11.3 35.9 ± 24.9 20.0 ± 10.9 12.3 ± 6.9 73.4 ± 36.6 5.5 ± 2.0 1.4 ± 0.7 1.6 ± 0.6 0.0 ± 0.0 167.6 ± 65.7	agsboosted 45.1 ± 9.4 21.8 ± 12.0 10.3 ± 5.5 12.3 ± 6.6 17.0 ± 8.4 7.0 ± 1.7 2.5 ± 0.8 0.9 ± 0.3 0.1 ± 0.1 117.0 ± 24.9
$\begin{tabular}{ c c c c c } \hline \hline Process \\ \hline \hline \hline Process \\ \hline \hline \hline Process \\ \hline \hline \hline \hline Process \\ \hline \hline \hline \hline \hline Process \\ \hline \hline \hline \hline \hline \hline Process \\ \hline \hline$	$\begin{array}{c} 4 \text{ jets,} \geq 4 \text{ b-tags} \\ 17.8 \pm 10.8 \\ 11.6 \pm 8.2 \\ 8.4 \pm 4.4 \\ 3.5 \pm 1.9 \\ 10.1 \pm 4.9 \\ 2.5 \pm 1.1 \\ 1.0 \pm 0.8 \\ 0.3 \pm 0.1 \\ 0.0 \pm 0.0 \\ \hline 55.2 \pm 23.0 \\ 0.9 \pm 0.2 \end{array}$	$5jets, \ge 4b-tags$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.3 ± 1.4 0.9 ± 0.8 0.7 ± 0.3 0.1 ± 0.1 96.5 ± 37.6 2.7 ± 0.6	$ \ge 6 \text{ jets}, \ge 4 \text{ b-ta} $ $ 17.6 \pm 11.3 $ $ 35.9 \pm 24.9 $ $ 20.0 \pm 10.9 $ $ 12.3 \pm 6.9 $ $ 73.4 \pm 36.6 $ $ 5.5 \pm 2.0 $ $ 1.4 \pm 0.7 $ $ 1.6 \pm 0.6 $ $ 0.0 \pm 0.0 $ $ 167.6 \pm 65.7 $ $ 5.9 \pm 1.4 $	ags boosted 45.1 ± 9.4 21.8 ± 12.0 10.3 ± 5.5 12.3 ± 6.6 17.0 ± 8.4 7.0 ± 1.7 2.5 ± 0.8 0.9 ± 0.3 0.1 ± 0.1 117.0 ± 24.9 2.2 ± 0.3 2.2 ± 0.3
$\begin{tabular}{ c c c c c } \hline \hline Process \\ \hline \hline \hline Process \\ \hline \hline \hline Process \\ \hline \hline \hline \hline Process \\ \hline \hline \hline \hline \hline Process \\ \hline \hline \hline \hline \hline \hline Process \\ \hline \hline$	$\begin{array}{r} 4 jets, \geq 4 b\text{-tags} \\ 17.8 \pm 10.8 \\ 11.6 \pm 8.2 \\ 8.4 \pm 4.4 \\ 3.5 \pm 1.9 \\ 10.1 \pm 4.9 \\ 2.5 \pm 1.1 \\ 1.0 \pm 0.8 \\ 0.3 \pm 0.1 \\ 0.0 \pm 0.0 \\ 55.2 \pm 23.0 \\ 0.9 \pm 0.2 \\ 75 \end{array}$	$5 \text{ jets}, \ge 4 \text{ b-tags}$ 17.7 ± 10.9 22.1 ± 15.4 14.8 ± 7.7 6.9 ± 3.7 28.8 ± 13.9 4.3 ± 1.4 0.9 ± 0.8 0.7 ± 0.3 0.1 ± 0.1 96.5 ± 37.6 2.7 ± 0.6 104	$ \ge 6 \text{ jets}, \ge 4 \text{ b-ta} $ $ 17.6 \pm 11.3 $ $ 35.9 \pm 24.9 $ $ 20.0 \pm 10.9 $ $ 12.3 \pm 6.9 $ $ 73.4 \pm 36.6 $ $ 5.5 \pm 2.0 $ $ 1.4 \pm 0.7 $ $ 1.6 \pm 0.6 $ $ 0.0 \pm 0.0 $ $ 167.6 \pm 65.7 $ $ 5.9 \pm 1.4 $ $ 150 $	$\begin{array}{c cccc} \hline ags & boosted \\ \hline 45.1 \pm 9.4 \\ 21.8 \pm 12.0 \\ 10.3 \pm 5.5 \\ 12.3 \pm 6.6 \\ 17.0 \pm 8.4 \\ 7.0 \pm 1.7 \\ 2.5 \pm 0.8 \\ 0.9 \pm 0.3 \\ 0.1 \pm 0.1 \\ \hline 117.0 \pm 24.9 \\ \hline 2.2 \pm 0.3 \\ 104 \\ \end{array}$
$\begin{tabular}{ c c c c c } \hline \hline Process \\ \hline \hline \hline Process \\ \hline \hline \hline Process \\ \hline \hline \hline \hline \hline Process \\ \hline \hline \hline \hline \hline \hline Process \\ \hline \hline \hline \hline \hline \hline \hline \hline Process \\ \hline \hline$	$\begin{array}{r} 4 \text{ jets,} \geq 4 \text{ b-tags} \\ 17.8 \pm 10.8 \\ 11.6 \pm 8.2 \\ 8.4 \pm 4.4 \\ 3.5 \pm 1.9 \\ 10.1 \pm 4.9 \\ 2.5 \pm 1.1 \\ 1.0 \pm 0.8 \\ 0.3 \pm 0.1 \\ 0.0 \pm 0.0 \\ \hline 55.2 \pm 23.0 \\ 0.9 \pm 0.2 \\ \hline 75 \\ 0.017 \end{array}$	$\begin{array}{c} 5 jets, \geq 4 b\text{-tags} \\ 17.7 \pm 10.9 \\ 22.1 \pm 15.4 \\ 14.8 \pm 7.7 \\ 6.9 \pm 3.7 \\ 28.8 \pm 13.9 \\ 4.3 \pm 1.4 \\ 0.9 \pm 0.8 \\ 0.7 \pm 0.3 \\ 0.1 \pm 0.1 \\ 96.5 \pm 37.6 \\ 2.7 \pm 0.6 \\ 104 \\ 0.028 \end{array}$	$ \ge 6 \text{ jets}, \ge 4 \text{ b-ta} $ $ 17.6 \pm 11.3 $ $ 35.9 \pm 24.9 $ $ 20.0 \pm 10.9 $ $ 12.3 \pm 6.9 $ $ 73.4 \pm 36.6 $ $ 5.5 \pm 2.0 $ $ 1.4 \pm 0.7 $ $ 1.6 \pm 0.6 $ $ 0.0 \pm 0.0 $ $ 167.6 \pm 65.7 $ $ 5.9 \pm 1.4 $ $ 150 $ $ 0.035 $	

d EW'16 | 04.04.2016 | Page 67

	\ \ /	/			
	3 jets, 2 b-tags	3 jets, 3 b-tags	\geq 4 jets, 2 b-tags	\geq 4 jets, 3 b-tags	\geq 4 jets, \geq 4 b-tags
t t +lf	2558.6 ± 542.7	26.6 ± 10.5	2271.6 ± 505.0	60.3 ± 25.6	0.9 ± 0.8
$t\overline{t} + c\overline{c}$	220.9 ± 103.4	22.7 ± 13.6	478.4 ± 234.4	78.4 ± 45.4	3.4 ± 2.9
t ī +b	65.4 ± 28.5	21.4 ± 10.2	126.2 ± 57.7	52.2 ± 25.1	2.7 ± 1.6
t ī +2b	16.9 ± 7.6	6.6 ± 3.1	42.9 ± 20.2	22.3 ± 10.7	1.2 ± 0.7
$t\overline{t} + b\overline{b}$	8.6 ± 4.2	3.6 ± 1.8	48.9 ± 23.7	39.8 ± 18.8	13.4 ± 7.1
Single Top	93.2 ± 16.7	3.0 ± 1.0	87.6 ± 15.8	7.3 ± 2.5	0.4 ± 0.4
V+jets	14.5 ± 11.0	1.3 ± 0.8	16.0 ± 7.4	0.0 ± 0.0	0.0 ± 0.0
t t +V	3.6 ± 0.9	0.3 ± 0.2	16.4 ± 3.2	3.2 ± 0.9	0.5 ± 0.2
Diboson	1.7 ± 0.9	0.0 ± 0.0	1.2 ± 1.0	0.1 ± 0.0	0.0 ± 0.0
Total bkg	2983.4 ± 590.4	85.6 ± 25.6	3089.2 ± 650.6	263.6 ± 79.9	22.5 ± 9.8
tīH	1.4 ± 0.2	0.4 ± 0.1	8.1 ± 1.1	3.6 ± 0.6	1.0 ± 0.3
Data	3123	115	2943	319	27
S/B	0.00047	0.0051	0.0026	0.014	0.046
Data/B	1.0 ± 0.2	1.3 ± 0.4	1.0 ± 0.2	1.2 ± 0.3	1.2 ± 0.5