Future prospects for Supersymmetry

Emanuele A. Bagnaschi (DESY Hamburg)

DESY Hamburg 6 June 2016 Hamburg, Germany Name

squarks,quarks

The Minimal S	upersymmetric	Standard	Model
---------------	---------------	----------	-------

Chiral supermultiplets Symbol spin 0 spin 1/2 $(SU(3)_C, SU(2)_L, U(1)_Y)$ $(\tilde{u}_L, \tilde{d}_L)$ (u_L, d_L) Q

(×3 families)	и d	$\widetilde{u}_R^* \ \widetilde{d}_R^*$	$u_R^{\dagger} \ d_R^{\dagger}$	$ \begin{pmatrix} 3, 1, -\frac{-}{3} \\ \left(\bar{3}, 1, \frac{1}{3} \right) $
sleptons,leptons	L	(\tilde{v}, \tilde{e}_L)	(v, e_L)	$(1,2,-\frac{1}{2})$
(×3 families)	ē	\tilde{e}_R^*	e_R^{\dagger}	(1,1,1)
Higgses, Higgsinos	H_{μ}	$(H^+_{\scriptscriptstyle\! \rm M},H^{\rm O}_{\scriptscriptstyle\! \rm M})$	$(\widetilde{H}^+_{\!\scriptscriptstyle {\cal U}}, \widetilde{H}^{\rm O}_{\!\scriptscriptstyle {\cal U}})$	$(1, 2, \frac{1}{2})$
	H_d	$(H^{\rm O}_d,H^d)$	$(\widetilde{H}_d^{\rm O}, \widetilde{H}_d^-)$	$(1,2,-\frac{1}{2})$

Gauge supermultiplets

Name	spin 1/2	spin 1	$(SU(3)_C, SU(2)_L, U(1)_Y)$
gluino,gluon	$\widetilde{W}^{\pm} \overset{\hat{g}}{\widetilde{W}}^{0}$	w [±] w ^o	(8,1,0)
winos, W bosons bino, B boson	\widetilde{B}^{0}	B°	(1,3,0) (1,1,0)

 $\left(3,2,\frac{1}{6}\right)$

Physical motivations

Global fits

- In the unconstrained MSSM 105 new free parameters (masses, mixing angles and phases). Impossible/uninteresting to probe.
- Define a simplified model based on reasonable assumptions and a minor number of free parameters.
- Use of the available collider data, electro-weak precision observables and DM constraint to fit the best value and the likelihood profile of the model parameters.
- Effectively implement interplay between different searches (e.g. collider vs direct detection for DM).

The models

GUT Models

CMSSM

 $m_{\rm 0},m_{1/2},A_{\rm 0},\tan\beta$

NUHM1

 $m_0, m_{1/2}, A_0, \tan\beta, m_H$

NUHM2

 $m_0, m_{1/2}, A_0, \tan\beta, m_{H_u}, m_{H_d}$

- Based on unifications assumptions for the soft-SUSY breaking mass terms.
- Introduce correlation between the colored and uncolored sectors.

[1312.5250,1408.4060]

pMSSM10 M_1, M_2, M_3 $m_{\tilde{q}_{1,2}}, m_{\tilde{q}_3}, m_{\tilde{t}}$ A $M_A, \tan\beta, \mu$

- Phenomenological model with 10 low-energy input parameters.
- We assume all left and right soft-SUSY mass breaking terms to be equal.
- We assume that the first two generations of squarks have the same soft-SUSY breaking term.
- All the trilinear coupling are the same.

[1504.03260]

The framework

- Frequentist fitting framework written in Python/Cython and C++.
- We use SLHA standard as an interface between the external codes that are used to compute the spectrum and the observables.
- The Multinest algorithm is used to sample the parameter space.

Parameter	Range	Number of
		segments
M ₁	(-1, 1) TeV	2
M ₂	(0,4)TeV	2
M ₃	(-4 , 4) TeV	4
$m_{\tilde{q}}$	(0,4)TeV	2
$m_{\tilde{q}_3}$	(0,4)TeV	2
$m_{\tilde{i}}$	(0,2)TeV	1
M _A	(0,4)TeV	2
A	(-5, 5) TeV	1
μ	(-5, 5) TeV	1
$\tan \beta$	(1,60)	1
Total number of boxes		128

Spectrum generation SoftSUSY

Higgs sector and $(g-2)_{\mu}$

FeynHiggs, Higgssignals, Higgsbounds

B-Physics

SuFla, SuperIso

EW precision observables FeynWZ

Dark matter MicroOMEGAs, SSARD

The constraints

Indirect measurements

- (g−2)_μ. 3.4σ discrepancy may be explained with O(100) GeV smuons.
- M_W, M_Z, M_h and EWPO.
- Flavor observables $(B_s \rightarrow \mu \mu, b \rightarrow s\gamma)$.

Dark matter

Relic density and direct detection.

Collider - GUT models

- Limits are independent of A_0 , tan β , $m_{H_u}^2$ and $m_{H_d}^2$.
- Due to unification, limits on squarks and gluinos are relevant also for sleptons and electroweakinos.

The constraints - collider pMSSM10

Three classes of constraints

Electroweakinos production

- Simplified ModelS (SMS) approach. Limited mass hierarchies.
- Slepton production.
- $\hat{\chi}_1^{\pm} \hat{\chi}_2^0$ via sleptons.
- $\triangleright \quad \hat{\chi}_1^{\pm} \hat{\chi}_2^0 \text{ via WZ.}$

Colored sparticle production

We have combined the following CMS searches:

- 0-lepton M_{T2}
- 1-lepton M_{T2}^W
- 2-lepton OS/SS
- ▶ \geq 3 leptons.

Compressed stop scenarios

This scenario is separately. The stop cross-section is set to zero.

pMSSM10 best fit point

- Heavy Higgses, squarks, gluinos are relatively unconstrained.
- Left-handed fermion decay chains evolve via $\hat{\chi}_1^{\pm}$ and $\hat{\chi}_2^{0}$.
- Sleptons are at less than 1 TeV.

pMSSM10 mass spectrum

- Poor determination of the mass of colored sparticles (only lower bound from LHC searches).
- ► Larger freedom allow to fullfill the (g−2)_µ constraint without being in tension with the LHC searches.
- Improved fit with respect to the GUT models.

Model	$\chi^2/n_{\rm dof}$	χ^2 probability
CMSSM	32.8/24	11 %
NUHM1	31.1/23	12 %
NUHM2	30.3/22	11 %
pMSSM10	20.5/18	31 %

- 3.5σ discrepancy between the SM $(g-2)_{\mu}$ value and the measured one.
- ▶ In CMSSM,NUHM1 and NUHM2 there is a tension between the $(g-2)_{\mu}$ and LHC constraints from direct searches, due the universality relations.
- In the pMSSM10 we are able to fit perfectly the $(g-2)_{\mu}$.
- Impact of LHC8_{FWK} constraint limited.

Higgs physics

- pMSSM10 likelihood is very similar to the experimental value smeared by the theoretical uncertainty as given by FeynHiggs.
- ► Lower value of tan β are disfavored at the 68% CL by LHC8_{*EWK*}, $(g-2)_{\mu}$ and DM constraints
- The constraints interplay with the choice of a single soft SUSY-breaking mass-parameter for the sleptons.

- Different region of applicability for the two approaches (low SUSY vs large SUSY masses).
- Uncertainty estimation in the intermediate, phenomenologically interesting region, not trivial.

```
[SusyHD 1504.05200] [FlexibleSUSY Bagnaschi, Weiglein, Voigt 16xx.yyyyy]
[FeynHiggs 1312.4937]
```

W boson mass

- Perfect fit of M_W around it's measured values.
- Another example there it is relevant to have accurate theoretical predictions.

Future perspectives for SUSY

CMSSM

We have several different mechanism at play.

1. $\tilde{\tau}$ -coannihilation

- Leading mechanism when the mass difference between the τ̃ and the χ̃⁰₁ is of the order of a few GeV.
- $\hat{\chi}_1^0$ is Bino-like.
- Also $\tilde{\tau} \tilde{\tau}$ annihilation important in this scenario.

CMSSM

CMSSM

We have several different mechanism at play.

3. Focus point.

- Region where RGEs have focussing properties.
- We have that $\mu \approx M_1$, sizable Higgsino component of the $\hat{\chi}_1^{\circ}$.

NUHM1

Future perspectives for SUSY

efficient.

NUHM2

pMSSM10 mass spectrum

- Poor determination of the mass of colored sparticles (only lower bound from LHC searches).
- ► Larger freedom allow to fullfill the $(g-2)_{\mu}$ constraint without being in tension with the LHC searches.
- Improved fit with respect to the GUT models.

pMSSM10

In the pMSSM10 we have

• $M_1 \simeq M_2$, so that Bino $\tilde{\chi}_1^0$, Wino $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$.

New annihilation channels appear to be part of the relevant mechanism for the pMSSM10.

5 *b*-funnel

- Mass degeneracy condition: $2 \cdot \tilde{\chi}_1^0 \approx M_h$.
- Allowed only in the pMSSM10, excluded by gluino searches in the GUT models.

pMSSM10

In the pMSSM10 we have

• $M_1 \simeq M_2$, so that Bino $\tilde{\chi_1^0}$, Wino $\tilde{\chi_1^{\pm}}/\tilde{\chi_2^0}$.

New annihilation channels appear to be part of the relevant mechanism for the pMSSM10.

6 Z-funnel

- Mass degeneracy condition: $2 \cdot \tilde{\chi}_1^0 \approx M_Z$.
- Allowed only in the pMSSM10, excluded by gluino searches in the GUT models.

Collider vs direct detection

Future perspectives for SUSY

Other efforts

- ATLAS pMSSM19 scan vs 7/8 TeV searches.
- Flat-prior random-sampling. Upper and lower bound chosen to maximize coverage of the parameter space accessible to the LHC [1508.06608].

SUSY-AI : use results from the ATLAS scan to implement the constraints from the available searches using machine-learning method [1605.02797].

Other efforts

- Exclusion power of the 13 TeV data from Barr et al [1605.09502].
- Use the models previously found to be allowed by the ATLAS study.
- Exclude a further 15.7% model points from the set that survived from Run 1 searches.

- Fittino: last paper on the CMSSM [1508.05951]. They find it excluded at the 90% C.L..
- SuperBayesS: Bertone at al [1507.07008], global analysis of the pMSSM, including constraints coming from indirect detection (Fermi GeV excess).
- GAMBIT: new collaboration, no publication available yet.

Conclusions

- We performed what was at the time the first global likelihood analysis of the pMSSM using a frequentist approach including LHC8 constraints.
- Some model parameter, like the squark or the gluino mass, are poorly constrained by the fit.
- Others, like the χ^0_1 and the slepton masses are effectively constrained, mainly defined by the $(g-2)_{\mu}$ and *DM* constraints.
- LHC14 searches have a good prospect of exploring the preferred regions of m_{q̃} and m_{g̃}, as well as light t̃₁, ẽ and μ̃.