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Overview
GENEVA consistently combines 3 ingredients
@ Fully differential fixed-order calculations

» up to NNLO (based on N-jettiness subtractions)

@ Higher-order resummation
» up to NNLL’ using SCET formalism (but not restricted to it)

© Parton showering and hadronization to “fill out” jets
» using standard shower MC (currently PYTHIA8)

= NNLO-+NNLL’4PS Monte Carlo
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Higher-order resummation
@ Provides a natural link between NNLO and PS
o Is key to consistently improve perturbative accuracy outside FO region
@ Allows to systematically estimating perturbative uncertainties and
correlations (on event-by-event basis)
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GENEVA in a Nut Shell

GENEVA ®, | ®,
@ Physical (IR-finite, all-order) %@Q i
definition of events using |
suitable jet resolution variable 7 i 7‘;‘“ l
@ Construct resummed-+FO dog™® (T &(T)
d®, d®,

matched MC cross sections _'_P_‘_
at NNLL’-+NNLO
GENEVA—PYTHIAS8 interface i

@ Let shower fill out jets _'_P_‘_

with radiation i

PYTHIA8
© Hadronization

@ Additional soft interactions (MPI) Q ;C ’
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Step 1: Define Physical Events

Jet resolution variable T~ characterizes the scale of additional emission(s)
(analogous to evolution variable in PS, merging scale/variable in other approaches)

@ A L@

1 1
= : +on

1 1
1 1
1 1

7-(‘) < 7Bcut i 7—(') > 7-(‘)cut i 7—(') > 7:)cut
1 7-1 < 7'icut 1 71 > 7-icut

7:)cut 7'10ut

@ N-parton event represents an IR-finite physical (idealized) N-jet cross
section fully-differential in ®

» Emissions below 75" are unresolved (integrated over) and projected onto
T <~ spectra (which are part of ® )

> In the end take 75" — 0 (up to small IR cutoff A )
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We currently use N-jettiness T = T [Stewart, FT, Waaelwijn '09, "10]
@ Scales with p™ = E — |p] of emissions (virtuality-like)

» ete™ — 2/3jets: T = Tz is equivalent to thrust
» pp — V4 0/1jets: T = 7o is equivalent to beam thrust

@ Factorization and up to NNLL’ resummation in principle known for any N
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Step 2: Jet Resolution Spectrum

A Peak Tail
Resummation  Transition = Fixed Order

=

>

e
There are no strict boundaries — 7T spectrum describes transition between
0-jet and > 1-jet regions

@ Need consistent treatment of theory uncertainties across entire spectrum

» quite nontrivial because it requires nontrivial correlations
(simple factor-2-scale-variation-recipes are not good enough)

@ Complete description requires consistent matching of
resummation--fixed order

» Well understood for single-differential spectra to NNLL’+NNLO
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Step 2: Combining Resummation and FO

7’
dO’MC dO’NNLL dorons

cut 0 cut 0 cut
R (Tt = (T 4 (T

1\>/110 . dO.NNLL’ .
- cu 0 7’ > TClll P (P
d(}l > 7;] ) dq)()dr) ( 0 0] ) ( 1)
nons
T Tcut
d‘I>1 ( 0> )

Construct partonic MC cross sections that are fully-differential in ® 5 and
reproduce NNLL’4NNLOg To spectrum

@ NNLL’ resummation contains full ©(a?) singular contributions
» Proper distribution of 2-loop virtuals as dictated by NNLL’ resummation
@ Nonsingular corrections are fixed by matching to NNLOy and NLO,
» Implementation of differential N-jettiness subtractions
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Interlude: Resummation for 7,

Beam thrust/O-jettiness factorization in SCET [sStewart, FT, Waalewijn '09]

do ta + 1y
an ij (1) /dtadt,, Bi(ta, p)Bj(ty, ) Sij <75 s 7N>
Logarithms are split apart and resummed using RGE He Hard
~Q + —m—
To To -
ln2E :2ln29—ln2 02Q +2lnz—0 5 ?MRGE
eam :
g g N L
= Always resums ratios of hard, beam, soft scales Soft v
P = Q! rB = %Qs Hs = 76 pus~T + ——

Resummation is controlled by using To-dependent profile scales p; (7o)
[Ligeti, FT, Stewart '08; Abbate et al. '10; Berger et al. '10; Gangal, Stahlhofen, FT "14]

@ Can identify and estimate different sources of perturbative uncertainties
using appropriate profile scale variations

@ Evaluating MC cross sections for all sets of profile scales gives different
weights for each event providing event-by-event pert. uncertainties
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Step 3: Attaching the Parton Shower

Y

\T

;_rf" . F—t
cut’JJJJ\‘\
Ty

Since the parton shower generates perturbative emissions it should

o fill jets with radiation, i.e., provide unresolved emissions that have been
integrated over and projected onto partonic events
@ not change resummed jet cross sections
» Additional showering must not change the jet ® 5 kinematics, in particular
To, of an event (up to small power corrections)
> Achieved by taking 7¢’y* as small as possible, first shower emission of &
events done by GENEVA using To-preserving phase-space map
> Inclusive @, events further showered by PYTHIA8

=
g
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Step 3: Attaching the Parton Shower

pp~> Z/’v —ete” (7 TeV)
GENEVA NNLL+NNLO,

z L
200 SR B Analytic
[T T 1 30 2 F “F Partoni
bl pp— Z/“« —ete” (7 TeV) A AL = artonic
150 ! GENEVA NNLLT+NNLO(, — 25 ) e = Showered
B Analytic ] 2 % 10

—+ Partonic 1

£ Showered E

- Tail Region
‘ 7‘0 Qb 11‘0 130
T (GeV]

do /dTy [pb/GeV]
E
T

TR

[Ce\/] To [GeV]
Since the parton shower generates perturbative emissions it should
o fill jets with radiation, i.e., provide unresolved emissions that have been
integrated over and projected onto partonic events
@ not change resummed jet cross sections
» Additional showering must not change the jet ® 5 kinematics, in particular
To, of an event (up to small power corrections)
> Achieved by taking 7¢’y* as small as possible, first shower emission of &
events done by GENEVA using To-preserving phase-space map
> Inclusive @, events further showered by PYTHIA8
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Step 4: Hadronization

12 e T L4 g T e g
10; { ALEPH (91.2GeV) g 1.2 GENEVA+PYTHIAS 3
_10E [ oPAL (91.2Gev) 5 7 E== Default 3
% Sé L GENEVA-+PYTHIAS E E 1 === Tune 3 é
SE: 3 e E== Default I So0s . a"(mz):o'usé
i ﬁi N it ———- Tune 3 3 i . — No hadr. g
o E i .-._ ——as(mz):O.IISE 2 0.6 =
T o4 No hadr. ERG) 3
e i 7 po4 E
= ool . 3 T ggb b ALEPH (912Gev) -
: Peak Region = “E 1 opAL (912Gev)  Transition

= AT T e T ST ST ST N bbb b been b Do b b3

0 10 0 11 12 13 14 15 16 17 18 19 20

T; [GeV] Tz [GeV]

PYTHIA8 hadronization is unconstrained
@ Observed to behave as expected from field theory and factorization

» O(1) effect in nonperturbative peak region at very small 7~
» power-suppressed effect at larger T~

@ With enough pert. information included, tuning becomes equivalent to
extracting nonperturbative inputs from data (i.e. what it really should be)

@ Can directly utilize PYTHIA8’s nonperturbative model together with
higher-order resummed calculation
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Step 4: Hadronization

R R R SRR RARENR TR
pp— Z/y —ete (T TeV)
GENEVA+PYTHIA8 NNLL,+NNLOg
£ Showered
B Hadronized

200 e SRR N 40
pp—>Z/’y—>z, e (7TeV) 1 35
GENEVA+PyTHIAS NNLL,+NNLO, |
= Showered j

= Hadronized

pp
GENEVA+PY"

do/dT, [pb/GeV]

© Tail Region
‘ 57‘0 9‘0 1‘10 130
A

do /ATy [pb/GeV]
L

do/dTy [pb/GeV]
8

Peak Reglon 1 ] b Transition

To [GeV] To [GeV]
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Other observables: FO

400 T
E E pp — Z/y — ete (T TeV) 3
E E 4 GENEVA+PYTHIAS 3
300F R — NNLL,+NNLO, ]
- E £= DYNNLO (NNLO)M
;=
T Ew—=Z/y—ete (TTeV) El §20 E
~ IOOE GENEVA+PYTHIAS E - E
F 4 NNLL;+NNLO, 3 Tw E
E B2 DYNNLO (NNLO) E
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@ Validation against DYNNLO [Catani, Grazzini et al. '07, '09]

@ True NNLO only for pry < mz/2, > mz/2 sensitive to resummation
effects due to Sudakov shoulder
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Other observables: gr and ¢*

Compare to analytic resummed predictions from DYQT [Bozzi et al., ‘09, "11]

(each normalized to own total cross section)

1/o do/dgr [1/GeV]

ratio — 1

[ —

107 E wp—Z/y—ete”
f GENEVA+PYTHIA8

r =+ NNLL+NNLO,

E = DYQT NLL+LO,

E == DYQT NNLL+NLO,

1073

0.4

0.2

—025

_0.4Eiis

(7 TeV)

Conl vl

Ll

LL m‘“

T 1o
ar [GeV]

10?

@ GENEVA does not have formal
NNLL’" accuracy for variables
other than 7y itself

@ Pert. improvement still clearly
translates to other observables
due to fully exclusive description

» Was also observed for et e

» Relies on NLL 77 resummation
and PYTHIA8 showering

» Smaller GENEVA uncertainties at
very small gz do not imply higher
accuracy but are due to lack of
uncertainties in 77 resummation
and shower interface
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Other observables: gr and ¢*

Compare to analytic resummed predictions from BDMT [Banfi et al., '12]
(each normalized to own total cross section)

B T 1
10 10} ]
= 1n-2 ] F ]
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= 4 = F ]
4 & F B 1
_§« pp — Z/y — ete (7 TeV) 3 Tk pp — Z/y — ete” (T TeV) 4
= GENEVA+PYTHIAS 1 = f GENEVA+PYTHIAS
IS ~+ NNLL,+NNLO, 2 L02f T NNLL7+NNLO, ]
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Comparison to Data
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@ Essentially out-of-the-box results, no attempt at systematic tuning

» We do observe reduced sensitivity to PYTHIA8 parameters (as it should be)
@ Noticeably better agreement for lower a5 (M z)

> Same as seen in et e with higher-order resummation and hadronization
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Comparison to Data

GENEVA / Data — 1
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@ Essentially out-of-the-box results, no attempt at systematic tuning

» We do observe reduced sensitivity to PYTHIA8 parameters (as it should be)
@ Noticeably better agreement for lower a5 (Mz)

> Same as seen in et e with higher-order resummation and hadronization
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Step 5: Adding MPI

Discussion so far was for the primary hard collision
@ Addition of MPl is slightly nontrivial due to PYTHIAS8 interleaved evolution

» Shower conditions are applied to all particles identified as arising from
primary hard interaction, while secondary interactions are unconstrained

» Should allow to fully disentangle MPI
contributions from primary soft ISR 0.04

(requires to turn off rescattering) Zo Ty, 7TV
';‘ :\ L ‘ L ‘ LI ‘ LI ‘ L ‘ L \:
Q 014 = —e— ATLAS 7:
@ Beam thrust/O-jettiness potentially 5 or2 = GENEVA+DYS =
. = C =— GENEVA+PY8(no MPI)
very useful for tuning MPI models T b — Pythias E
. . z “'F B
> Primary perturbative effects are s E Tune 11 ]
. Z 0.08 — Tune 14 —
known precisely > o Tune 17 ]
0.06 — —

@ There has been significant progress
on field-theoretic description of MPI 0

» Can imagine including this in 1.0
perturbative input which would then e

place constraint on MPI model

0.8

0.7
0.6

0.5

MC/Data

L1l ‘ L1l ‘ L1l ‘77\7;77\77\77‘77‘7‘ T
10 20 30 40 50 60

Tom [GeV]
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Traditional UE Measurements in DY

Z — w7 TeV, Toward region Z = w7 TeV, Toward region

";'_‘ 10 \ T ‘ LI ‘ LI ‘ LI ‘ LI ‘ LI ‘ LI ‘ \? %‘
= & —— CMS E O,
<) L === GENEVA+PY8 B 5
N 1E == GENEVA+PY8(no MPI) 3 b
T F —— PyrHIA8 3 z
2107t - Tune 11 - ~
% E Tune 14 3 Wl
3 F Tune 17 B i
Z 10 % = =
~ E 3
— C 3
107 = —
-
145 | I I I I I [
S 12 = £
8 i 8
< 1 E <
Q ]
= o8 5 o08E
0.7 & T =
06 SR AR A 0.6:“““““““““‘:
2 4 6 8 10 12 14 o 20 40 60 8o 5 100
p1 [GeV] pf [GeV]

@ Overall GENEVA +PYTHIA8 agrees well PYTHIA8 in low-pr regions
» Confirms that PYTHIA8 shower and MPI are not being spoiled by GENEVA

@ Clear improvements observed toward larger transverse momenta

Frank Tackmann (DESY) DY at NNLOA4-NNLLH-PS in GENEVA 2016-07-04 13/14



Summary and Outlook

First complete matching of NNLO+NNLL"+PS

@ Higher-order resummation of jet resolution variable @ GEN EVA
provides a natural link between NNLO and PS ®

@ Provides systematic estimate of both resummation and FO perturbative
uncertainties on event-by-event basis

Current status

@ pp — v/Z is completed

> NNLL'+NNLO, for 0/1-jet resolution 7o
» NLL+NLO; for 1/2-jet resolution 71
» Interface to PYTHIA8 shower+-hadronization and MPI

Plans for immediate future
@ Currently working on public release
» Spending significant effort to make the code easy to use as well as easy to
extend, stay tuned ...
@ pp — W at same precision is in the pipeline (likely to be part of release)
@ Dedicated PYTHIA8 tune for GENEVA
@ Further improve and study perturbative inputs and accuracy
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Uncertainties from Profile Scale Variations

(lllustration for gg — H at mpy = 125 GeV)

300 T T T T
gg—)H(gTeV
my =125 GeV

jot u
Teiemy < T

0 10 ‘ 20 30 40 50 60 70 80
T [GeV]

A ,;: Collective overall scale variation

@ Leaves all scale ratios and resummed logs invariant and thus
corresponds to overall FO uncertainty (within resummed prediction)

@ Reproduces usual FO scale variation in inclusive cross section
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Uncertainties from Profile Scale Variations

(Nustration for gg — H at my = 125 GeV)

B R s e m i m T L L o e e
L gg— H (8TeV) ] L gg— H (8TeV) ]
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2 60 4 8 60 // /,’/ / -
< r —wup(=0) 1 E e . /. ——me(a=0) 1
© oy ns(B=0) d @ 4o 7 77 / ps(a=0) -
e S e np(B=%1/6) e P - —-ppla==+1) ]

C J £ _- - R _ J

20:' ,: 205/:// ”,// ps(a==£1) ,:
0Bl Lo L b b L oEFEAn Tl L b b b ]

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Tt [GeV] Tt [GeV]

A esum: Resummation scale variations

@ Envelope of separately varying all profile scales for fixed pg, pro (within
canonical constraints), total of six independent variations

o Directly probes size of logs and uncertainties in resummed log series
@ Vanishes at large 7 as resummation turns off
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Perturbative Accuracy

(Notation: 7 = 7/Q, L = InT, Leus = In 7°"%)

cut LL, NLL, NLL,  NNLL,
o(r )= X Lo
oB
+ oz L2 +cioLlewt+ €1,-1 + F,(7°u)] NLOy
+ a2+ + 4
1 do
Zas/T[ cnl + cio + Tfl(T)] LON.1
oB dT

+a2/7[ c23L® 4+ c22L? + earL + c20 + Tfp(7)]  NLOnus
+ad/r[ T + .+ 1 4+

Lowest perturbative accuracy at all 7 requires (N)LL, +LOn,1
— Provided by ME/PS: CKKW, MLM (except PS might not get full NLL)
— LOy is naturally part of L, and so automatically included
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Perturbative Accuracy

(Notation: 7 = 7/Q, L = InT, Leus = In 7°"%)

cut LL, NLL, NLL,  NNLL,
o(r ): X Lo
oB
+ as[ CHLZ t+(’10L(‘ut+ C1,—1 + Fl(Tcut)] NLON
+ o 4+ 4+ 4
1 d
7 Zas/T[ cul + cio + Tfl(T)] LON.1
oB dr
+a2/7[ c2L® 4+ c22L? + el + cao + Tfp(T)]  NLOnus
+ad/r[ T + .+ 1 4+

NLO+PS matching (MC@NLO, POWHEG) adds full NLOy to o (7<ut)
— Improves accuracy for o (7"t ~ 1) to NLO
— Does notimprove accuracy of spectrum
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Perturbative Accuracy

(Notation: 7 = 7/Q, L = InT, Leus = In 7°"%)

cut LL, NLL, NLL. NNLL,
o(T°") _ ) LOx

oB
+ as[ Cll Lz ut + plOL(‘llt + C1,-1 + Fl(Tcut)] NLON
+ o2 o+ 4+ 4

1 do
Zas/T[ cul + cio + Tfl(T)] LON.1

oB dr

+a2/7] ca3L® 4 c32L% 4 e L 4 a0 + Tfp(r)]  NLOs
+ad/r[ 0+ + 0 4

Relative O(as) accuracy at all 7 requires NNLL, +NLON.1
— NLOn is now naturally part of NLL and automatically included
— similarly NNLOy is naturally part of NNLL/
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Resummation Order Counting

Resummation is really performed in the exponent of the cross section with
counting asL ~ 1

o~ [1+as+a§+---]exp[Za:L"+1(1+as+a§+---)

~ LL+ NLL + NNLL + - --

Fixed-order corrections Resummation input
singular  nonsingular Ya Icusp B

Default conventions:

NLL 1 - 1-loop 2-loop 2-loop
NLL’+NLO as as 1-loop 2-loop 2-loop
NNLL’+NNLO | a2 a? 2-loop 3-loop 3-loop
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