Drell-Yan Production at NNLO+NNLL'+PS in GENEVA

Frank Tackmann

Deutsches Elektronen-Synchrotron

LHC Physics Discussion DESY, July 4, 2016

S. Alioli, C. Bauer, C. Berggren, A. Hornig, FT, C. Vermilion, J. Walsh, S. Zuberi [JHEP09 (2013) 120]

S. Alioli, C. Bauer, C. Berggren, FT, J. Walsh [PRD92 (2015), 094020]

S. Alioli, C. Bauer, S. Guns, FT [arXiv:1605.07192]

< 行り)

Overview.

GENEVA consistently combines 3 ingredients

- Fully differential fixed-order calculations
 - up to NNLO (based on N-jettiness subtractions)
- e Higher-order resummation
 - up to NNLL' using SCET formalism (but not restricted to it)
- Parton showering and hadronization to "fill out" jets
 - using standard shower MC (currently PYTHIA8)
- ⇒ NNLO+NNLL'+PS Monte Carlo

< 47 >

Overview.

GENEVA consistently combines 3 ingredients

- Fully differential fixed-order calculations
 - up to NNLO (based on N-jettiness subtractions)
- e Higher-order resummation
 - up to NNLL' using SCET formalism (but not restricted to it)
- Parton showering and hadronization to "fill out" jets
 - using standard shower MC (currently PYTHIA8)
- ⇒ NNLO+NNLL'+PS Monte Carlo

Higher-order resummation

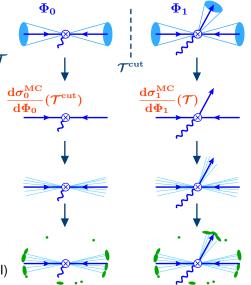
- Provides a natural link between NNLO and PS
- Is key to consistently improve perturbative accuracy outside FO region
- Allows to systematically estimating perturbative uncertainties and correlations (on event-by-event basis)

2016-07-04 1 / 14

< 47 >

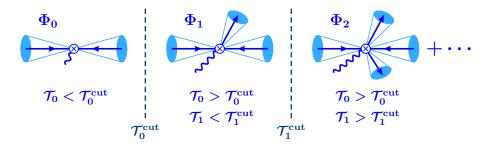
GENEVA in a Nut Shell.

GENEVA


- Physical (IR-finite, all-order) definition of events using suitable jet resolution variable T
- Construct resummed+FO matched MC cross sections at NNLL' $_{T}$ +NNLO

GENEVA-PYTHIA8 interface

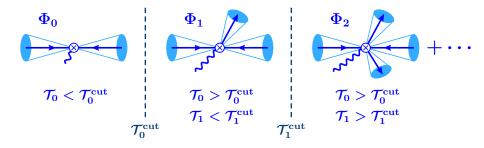
Let shower fill out jets with radiation


ΡΥΤΗΙΑ8

- Hadronization
- Additional soft interactions (MPI)

Step 1: Define Physical Events.

Jet resolution variable T characterizes the scale of additional emission(s) (analogous to evolution variable in PS, merging scale/variable in other approaches)



- N-parton event represents an IR-finite physical (idealized) N-jet cross section fully-differential in Φ_N
 - Emissions below $\mathcal{T}_N^{\text{cut}}$ are unresolved (integrated over) and projected onto $\mathcal{T}_{M < N}$ spectra (which are part of Φ_N)
 - In the end take $\mathcal{T}_N^{\mathrm{cut}} \to 0$ (up to small IR cutoff Λ_N)

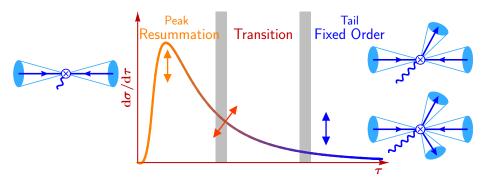
< 47 >

Step 1: Define Physical Events.

Jet resolution variable T characterizes the scale of additional emission(s) (analogous to evolution variable in PS, merging scale/variable in other approaches)

We currently use N-jettiness $\mathcal{T}\equiv\mathcal{T}_N$ [Stewart, FT, Waaelwijn '09, '10]

• Scales with $p^+ = E - |\vec{p}|$ of emissions (virtuality-like)

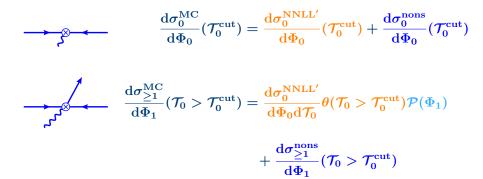

• $e^+e^- \rightarrow 2/3$ jets: $\mathcal{T} \equiv \mathcal{T}_2$ is equivalent to thrust

▶ $pp \rightarrow V + 0/1$ jets: $\mathcal{T} \equiv \mathcal{T}_0$ is equivalent to beam thrust

Factorization and up to NNLL' resummation in principle known for any N

(🗗)

Step 2: Jet Resolution Spectrum.


There are no strict boundaries $\rightarrow \mathcal{T}$ spectrum describes transition between 0-jet and \geq 1-jet regions

Need consistent treatment of theory uncertainties across entire spectrum

- quite nontrivial because it requires nontrivial correlations (simple factor-2-scale-variation-recipes are not good enough)
- Complete description requires consistent matching of resummation+fixed order
 - Well understood for single-differential spectra to NNLL'+NNLO

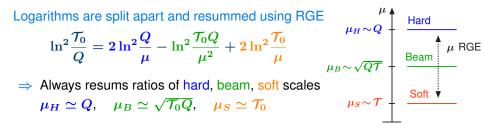
Frank Tackmann (DESY)

Step 2: Combining Resummation and FO.

Construct partonic MC cross sections that are fully-differential in Φ_N and reproduce NNLL'+NNLO₀ \mathcal{T}_0 spectrum

- NNLL' resummation contains full $\mathcal{O}(\alpha_s^2)$ singular contributions
 - Proper distribution of 2-loop virtuals as dictated by NNLL' resummation
- Nonsingular corrections are fixed by matching to NNLO₀ and NLO₁
 - Implementation of differential N-jettiness subtractions

Frank Tackmann (DESY)

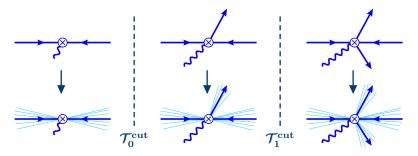

DY at NNLO+NNLL+PS in GENEVA

< 67 →

Interlude: Resummation for \mathcal{T}_0 .

Beam thrust/0-jettiness factorization in SCET [Stewart, FT, Waalewijn '09]

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_0} = H_{ij}(\mu) \int \mathrm{d}t_a \mathrm{d}t_b \, B_i(t_a,\mu) B_j(t_b,\mu) \, S_{ij}\left(\mathcal{T}_0 - \frac{t_a + t_b}{Q},\mu\right)$$

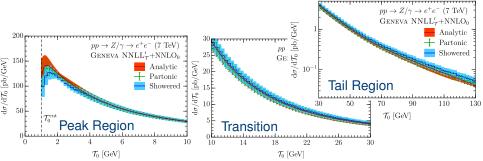


Resummation is controlled by using \mathcal{T}_0 -dependent profile scales $\mu_i(\mathcal{T}_0)$ [Ligeti, FT, Stewart '08; Abbate et al. '10; Berger et al. '10; Gangal, Stahlhofen, FT '14]

- Can identify and estimate different sources of perturbative uncertainties using appropriate profile scale variations
- Evaluating MC cross sections for all sets of profile scales gives different weights for each event providing event-by-event pert. uncertainties

Frank Tackmann (DESY)

Step 3: Attaching the Parton Shower.



Since the parton shower generates perturbative emissions it should

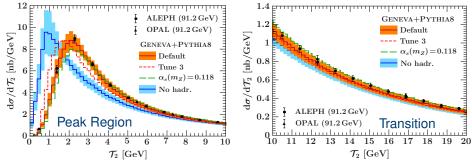
- fill jets with radiation, i.e., provide unresolved emissions that have been integrated over and projected onto partonic events
- not change resummed jet cross sections
 - Additional showering must not change the jet Φ_N kinematics, in particular \mathcal{T}_0 , of an event (up to small power corrections)
 - Achieved by taking *T*_{0,1}^{cut} as small as possible, first shower emission of Φ₁ events done by GENEVA using *T*₀-preserving phase-space map
 - ► Inclusive Φ₂ events further showered by PYTHIA8

Frank Tackmann (DESY)

Step 3: Attaching the Parton Shower.

Since the parton shower generates perturbative emissions it should

- fill jets with radiation, i.e., provide unresolved emissions that have been integrated over and projected onto partonic events
- not change resummed jet cross sections

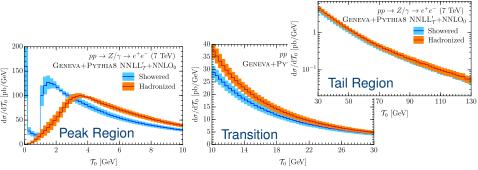

 - ► Achieved by taking T_{0,1}^{cut} as small as possible, first shower emission of Φ₁ events done by GENEVA using T₀-preserving phase-space map
 - ► Inclusive Φ₂ events further showered by PYTHIA8

Frank Tackmann (DESY)

DY at NNLO+NNLL+PS in GENEVA

2016-07-04 7 / 14

Step 4: Hadronization.

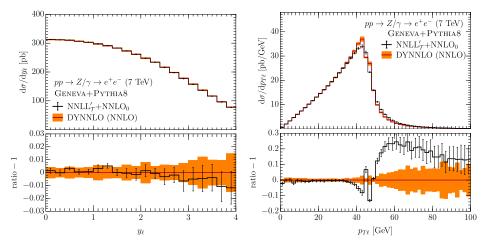


PYTHIA8 hadronization is unconstrained

- Observed to behave as expected from field theory and factorization
 - $\mathcal{O}(1)$ effect in nonperturbative peak region at very small \mathcal{T}
 - power-suppressed effect at larger \mathcal{T}
- With enough pert. information included, tuning becomes equivalent to extracting nonperturbative inputs from data (i.e. what it really should be)
- Can directly utilize PYTHIA8's nonperturbative model together with higher-order resummed calculation

Frank Tackmann (DESY)

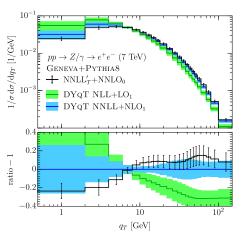
Step 4: Hadronization.



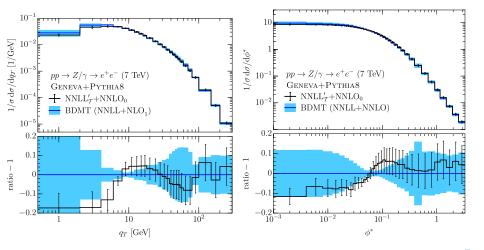
PYTHIA8 hadronization is unconstrained

- Observed to behave as expected from field theory and factorization
 - $\mathcal{O}(1)$ effect in nonperturbative peak region at very small \mathcal{T}
 - power-suppressed effect at larger \mathcal{T}
- With enough pert. information included, tuning becomes equivalent to extracting nonperturbative inputs from data (i.e. what it really should be)
- Can directly utilize PYTHIA8's nonperturbative model together with higher-order resummed calculation

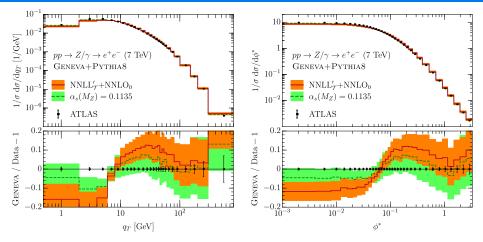
Frank Tackmann (DESY)


Other observables: FO.

- Validation against DYNNLO [Catani, Grazzini et al. '07, '09]
- True NNLO only for $p_{T\ell} < m_Z/2, \gtrsim m_Z/2$ sensitive to resummation effects due to Sudakov shoulder

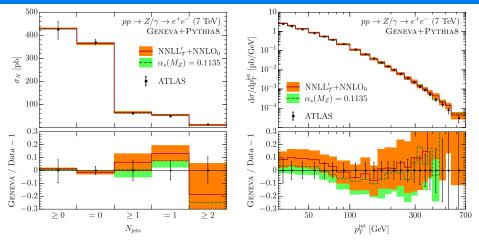

Frank Tackmann (DESY)

Compare to analytic resummed predictions from DYqT [Bozzi et al., '09, '11] (each normalized to own total cross section)



- GENEVA does not have formal NNLL' accuracy for variables other than T₀ itself
- Pert. improvement still clearly translates to other observables due to fully exclusive description
 - ► Was also observed for e⁺e⁻
 - Relies on NLL T₁ resummation and PYTHIA8 showering
 - Smaller GENEVA uncertainties at very small q_T do not imply higher accuracy but are due to lack of uncertainties in \mathcal{T}_1 resummation and shower interface

Compare to analytic resummed predictions from BDMT [Banfi et al., '12] (each normalized to own total cross section)

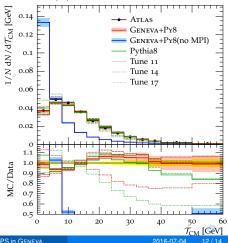


Comparison to Data.

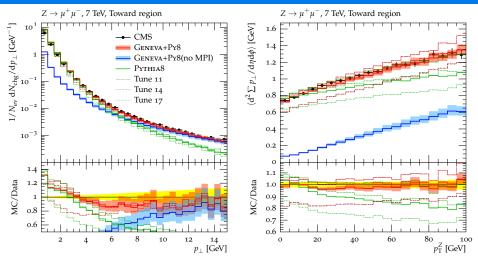
- Essentially out-of-the-box results, no attempt at systematic tuning
 - We do observe reduced sensitivity to PYTHIA8 parameters (as it should be)
- Noticeably better agreement for lower $lpha_s(M_Z)$
 - ▶ Same as seen in *e*⁺*e*[−] with higher-order resummation and hadronization

Comparison to Data.

- Essentially out-of-the-box results, no attempt at systematic tuning
 - We do observe reduced sensitivity to PYTHIA8 parameters (as it should be)
- Noticeably better agreement for lower $\alpha_s(M_Z)$
 - Same as seen in e⁺e⁻ with higher-order resummation and hadronization


Frank Tackmann (DESY)

< 🗇 >


Step 5: Adding MPI.

Discussion so far was for the primary hard collision

- Addition of MPI is slightly nontrivial due to PYTHIA8 interleaved evolution
 - Shower conditions are applied to all particles identified as arising from primary hard interaction, while secondary interactions are unconstrained (requires to turn off rescattering)
 Z → μ⁺μ⁻, 7 TeV
- Beam thrust/0-jettiness potentially very useful for tuning MPI models
 - Primary perturbative effects are known precisely
 - Should allow to fully disentangle MPI contributions from primary soft ISR
- There has been significant progress on field-theoretic description of MPI
 - Can imagine including this in perturbative input which would then place constraint on MPI model

Traditional UE Measurements in DY.

Overall GENEVA + PYTHIA8 agrees well PYTHIA8 in low-p_T regions

- Confirms that PYTHIA8 shower and MPI are not being spoiled by GENEVA
- Clear improvements observed toward larger transverse momenta

Frank Tackmann (DESY)

DY at NNLO+NNLL+PS in GENEVA

2016-07-04 13 / 14

Summary and Outlook.

First complete matching of NNLO+NNLL'+PS

 Higher-order resummation of jet resolution variable provides a natural link between NNLO and PS

 Provides systematic estimate of both resummation and FO perturbative uncertainties on event-by-event basis

Current status

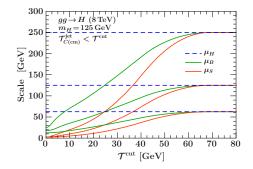
- $pp
 ightarrow \gamma/Z$ is completed
 - ▶ NNLL'+NNLO₀ for 0/1-jet resolution T_0
 - NLL+NLO₁ for 1/2-jet resolution T₁
 - Interface to PYTHIA8 shower+hadronization and MPI

Plans for immediate future

- Currently working on public release
 - Spending significant effort to make the code easy to use as well as easy to extend, stay tuned ...
- $ullet \, pp o W$ at same precision is in the pipeline (likely to be part of release)
- Dedicated PYTHIA8 tune for GENEVA
- Further improve and study perturbative inputs and accuracy

Frank Tackmann (DESY)

2016-07-04 14 / 14

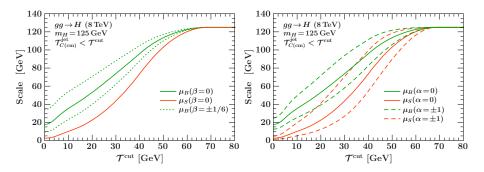

Backup Slides

2016-07-04 14/14

< 67 >

Uncertainties from Profile Scale Variations.

(Illustration for gg
ightarrow H at $m_H = 125 \, {
m GeV}$)


$\Delta_{\mu i}$: Collective overall scale variation

- Leaves all scale ratios and resummed logs invariant and thus corresponds to overall FO uncertainty (within resummed prediction)
- Reproduces usual FO scale variation in inclusive cross section

< 67 →

Uncertainties from Profile Scale Variations.

(Illustration for gg
ightarrow H at $m_H = 125\,{
m GeV}$)

Δ_{resum} : Resummation scale variations

- Envelope of separately varying all profile scales for fixed μ_H , $\mu_{\rm FO}$ (within canonical constraints), total of six independent variations
- Directly probes size of logs and uncertainties in resummed log series
- Vanishes at large T as resummation turns off

Frank Tackmann (DESY)

DY at NNLO+NNLL+PS in GENEVA

< 🗗 >

Perturbative Accuracy.

(Notation: $\tau = T/Q$, $L = \ln \tau$, $L_{cut} = \ln \tau^{cut}$) ${\sigma(au^{
m cut})\over \sigma_B}=$ LL_{σ} NLL_{σ} NLL_{σ} NLL_{σ} NNLL_{σ} 1 LON $F_1(au^{ ext{cut}})$ + $\alpha_s \left[\frac{c_{11}}{2} L_{cut}^2 + c_{10} L_{cut} + c_{1,-1} + \right]$ **NLO**_N $\frac{1}{\sigma_{B}}\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \alpha_{s}/\tau \begin{bmatrix} c_{11}L + c_{10} & + \end{bmatrix}$ $\tau f_1(\tau)$ LO_{N+1} $+ \alpha_{c}^{2} / \tau \left[\begin{array}{cc} c_{23}L^{3} + c_{22}L^{2} + c_{21}L + c_{20} + \tau f_{2}(\tau) \right]$ NLO_{N+1} $+ \alpha_{2}^{3} / \tau [$ + + + +

Lowest perturbative accuracy at all T requires (N)LL_{σ}+LO_{N+1}

- \rightarrow Provided by ME/PS: CKKW, MLM (except PS might not get full NLL_{σ})
- \rightarrow LO_N is naturally part of LL_{σ} and so automatically included

Frank Tackmann (DESY)

DY at NNLO+NNLL+PS in GENEVA

< 🗇 >

Perturbative Accuracy.

(Notation: $\tau = T/Q$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$) ${\sigma(au^{
m cut})\over \sigma_B}=$ LL_{σ} NLL_{σ} NLL_{σ} NLL_{σ} NNLL_{σ} 1 LON $F_1(au^{ ext{cut}})$ $+ \alpha_s \left[\frac{c_{11}}{2} L_{cut}^2 + c_{10} L_{cut} + c_{1,-1} + \right]$ **NLO**_N $rac{1}{\sigma_B}rac{\mathrm{d}\sigma}{\mathrm{d} au}=lpha_s/ auig[egin{array}{c} c_{11}L &+ & c_{10} \end{array} +$ $|\tau f_1(\tau)|$ LO_{N+1} $+ \alpha_{*}^{2} / \tau \left[\begin{array}{c} c_{23}L^{3} + c_{22}L^{2} + c_{21}L + c_{20} + \tau f_{2}(\tau) \right]$ NLO_{N+1} $+ \alpha_{*}^{3} / \tau [$ + + + + + +

NLO+PS matching (MC@NLO, POWHEG) adds full NLO_N to $\sigma(\tau^{\rm cut})$

- ightarrow Improves accuracy for $\sigma(au^{
 m cut} \sim 1)$ to NLO
- → Does not improve accuracy of spectrum

Frank Tackmann (DESY)

DY at NNLO+NNLL+PS in GENEVA

< 67 →

Perturbative Accuracy.

(Notation: $\tau = T/Q$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$) ${\sigma(au^{
m cut})\over \sigma_B}=$ LL_{σ} NLL_{σ} NLL_{σ} NLL_{σ} NNLL_{σ} 1 LON $+ \alpha_s \left[\frac{c_{11}}{2} L_{cut}^2 + c_{10} L_{cut} + c_{1,-1} + \right]$ $F_1(\tau^{\mathrm{cut}})$ **NLO**_N $+ \alpha_{*}^{2} [$ + + + $\frac{1}{\sigma_B} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \alpha_s / \tau \begin{bmatrix} c_{11}L + c_{10} & + \end{bmatrix}$ $\tau f_1(\tau)$ LO_{N+1} $+ \alpha_{*}^{2} / \tau \left[c_{23}L^{3} + c_{22}L^{2} + c_{21}L + c_{20} + \tau f_{2}(\tau) \right]$ NLO_{N+1} $+ \alpha_{2}^{3} / \tau [$ + + +

Relative $\mathcal{O}(\alpha_s)$ accuracy at all \mathcal{T} requires NNLL_{σ}+NLO_{N+1}

- \rightarrow NLO_N is now naturally part of NLL'_{σ} and automatically included
- \rightarrow similarly NNLO_N is naturally part of NNLL'_{σ}

Frank Tackmann (DESY)

DY at NNLO+NNLL+PS in GENEVA

2016-07-04 17 / 14

< 67 →

Resummation is really performed in the exponent of the cross section with counting $\alpha_s L \sim 1$

$$\sigma \sim \left[1 + \alpha_s + \alpha_s^2 + \cdots\right] \exp\left[\sum_n \alpha_s^n L^{n+1} (1 + \alpha_s + \alpha_s^2 + \cdots)\right]$$
$$\sim \quad \mathsf{LL} + \mathsf{NLL} + \mathsf{NNLL} + \cdots$$

Default conventions:		Fixed-order corrections		Resummation input		
		singular	nonsingular	$oldsymbol{\gamma_x}$	Γ_{cusp}	$\boldsymbol{\beta}$
	NLL	1	-	1-loop	2-loop	2-loop
	NLL'+NLO	$lpha_s$	$lpha_s$	1-loop	2-loop	2-loop
	NNLL'+NNLO	$lpha_s^2$	$lpha_s^2$	2-loop	3-loop	3-loop

< 67 >