Test beam with ams Chess1 at Bonn

Luigi Vigani

Why test beam at Bonn

- ♦ Had chance to join a test beam in Bonn
- ♦ They were going to perform a test beam campaign in March at Elsa (Elektronen-Stretcher-Anlage)
- ♦ They kindly let me place an ams Chess1 device on the beamline next to their experiments

The Elsa beam line

- 3-3.5 GeV electrons
- 200 mA current

Not-irradiated ams Chess1 in beam line

Many experiments on one table (space for Chess1 kindly given).

One experiment with 6 planes before Chess1.

No telescope available.

Chess1 daughterboard, motherboard, atlys board and cable sent from RAL (thanks Jaya and Jens). No way to verify alignment with beam.

Data taking

- Oscilloscope provided by Bonn, same DAQ as normally used
- ♦ Labview drivers for scope (Tektronix)
 - ♦ Could save 3 waves at the same time
 - ♦ Slow data taking: rate of few Hz
 - ♦ When in DC mode scope resolution of 4 mV
 - ♦ Trigger on only one channel (not a combination of the 3)
- ♦ 2 days of data taking
 - ♦ ~36 hours effectively
- Many spectra obtained
- ♦ Calibrations still underway...

Data taken

Run num	Bias	Config	Board	to channel1	Board to channel 2	Board to channel 3	Trigger on scope Ch	Trigger level		Coupling	Events number
	1	60	7	31	32	33	1	1	0.03	AC	1000
	2	60	7	31	32	33	1	1	0.03	AC	1000
	3	60	7	31	32	33	1	1	0.03	AC	157
	4	60	7	31	32	33	1	1	1.5	DC	1000
	5	60	7	31	32	33	1	1	1.5	DC	1718
	6	60	7	31	32	33	1	1	1.5	DC	2244
	7	60	7	31	32	33	2	2	1.5	DC	2444
	8	60	7	34	32	33	2	2	1.5	DC	2287
	9	60	7	34	32	33	2	2	1.5	DC	508
	10	60	7	34	32	33	2	2	1.49	DC	1264
	11	40	7	34	32	33	2	2	1.43	DC	733
	12	40	7	34	32	33	2	2	1.43	DC	1302
	13	80	7	34	32	33	2	2	1.59	DC	1306
	14	80	7	34	32	33	2	2	1.6	DC	359
	15	80	7	34	32	33	2	2	1.6	DC	1917
	16	60	8	34	32	33	3	3	1.37	DC	148
	17	60	8	34	32	33	3	3	1.37	DC	1226
	18	80	8	34	32	33	3	3	1.435	DC	2724
	19	80	9	34	32	33	3	3	1.37	DC	971
	20	80	9	34	32	33	3	3	1.37	DC	1533

Due to the short time, focus only on APA8, outputs 1,2,3 and 4.

Different configurations and biases investigated.

DAC settings as defined by Santa Cruz, plus an extra configuration 9 (see later)

Spectrum

No Landau inferred

Correlations

Scope Ch1

(trg)

Scope

Ch2

Scope

No correlation at all: as expected.

Is the spectrum not well defined because of charge sharing?

Spectrum

Trigger on channel 2 (output 2)

Still undefined.

Correlations

No correlation with channel 1: expected.

Something with channel 3: charge sharing!

Sum of the 3 signals

(when the signal is below 22 mV is considered 0 to avoid noise contribution)

No sum

Sum
Something more peak-shaped and longer tail

Correlations

Active Pixel Array

Channel 1 moved on output 1 (beside channel 3). Still triggering on channel 2.

No correlation between 2 and 1: pixel too far for charge sharing.

Correlations

Similar situation as before.

A "bending" in the correlations observed: high release of charge that crosses 2 pixels? Not statistically significant I fear.

Single and sum spectra

(when the signal is below 20 mV is considered 0 to avoid noise contribution)

Longer tail...

Correlations

Some little correlation on channel 1 as well...

Single and sum spectra

(when the signal is below a certain threshold is considered 0 to avoid noise contribution)

No sum

Sum with threshold 25mV

Sum with threshold 22mV

A really nice peak revealed!

Configuration 7, bias comparison

Bias 40 V

Bias 60 V

Bias 80 V

Sum of 3 channels

One

channel

Spectrum

Longer tail: higher gain (proved with laser).

Something observed again at ~80 mV: if the gain is higher that should correspond to a lower value in electrons...

Correlations

This time triggered on output 2, the central pixel: charge sharing symmetric!

Sum of the 3 signals

(when the signal is below 22 mV is considered 0 to avoid noise contribution)

Correlations

Great increase in charge sharing

Sum of the 3 signals

(when the signal is below 20 mV is considered 0 to avoid noise contribution)

Something peak-ish somewhere else... Likely not Landau.

Trial for a configuration 9

Some analysis done back with edge-TCT

Signal as a function of depth, bias dependence:

- Black: 20V Green: 60V

DAC configuration 8:

- iPFB = 2700
- iNSF = 750
- Casc = 2600
- VPLoad = 2100
 - iN = 1000
- iNBias = 150

Signal decreases with bias...

DAC configuration 9:

- iPFB = 2500
- iNSF = 750
- Casc = 2600
- VPLoad = 2100
 - iN = 1200
- iNBias = 150

Signal lower but increases with bias

22

Correlations

Active Pixel Array

Little charge sharing

Sum of the 3 signals

(when the signal is below 20 mV is considered 0 to avoid noise contribution)

Conclusions

- ♦ Test beam performed in Bonn with a Chess1 not-irradiated device.
- ♦ APA8 investigated
- ♦ Multiple spectra taken
- ♦ Results promising.

Open questions:

- ♦ Do we really see Landau distributions?
- What should we expect?
 - ♦ Are we depleting enough?
 - ♦ Can it be that the read-out is slow and we are getting lot of thermals?
 - ♦ DAC dependence?

Future plans

- Check the correlation with peaking time of the signal
 - ♦ With HVStripV1 it lead to something interesting
- ♦ Calibrations!

Backup

Some waves

Config 7 Bias 60V

Config 7 Bias 80V

Config 7 Bias 40V

Config 9 Bias 80V

Config 8 Bias 60V

Config 8 Bias 80V

