Higgs discovery

Farah Noreen Afzal

HISKP, University of Bonn

08.04.2016

see blackboard

Higgs Production mechanisms

Decay modes of SM Higgs

The ATLAS detector

- Length : 46 m
- · Barrel toroid length 26 m
- Overall weight 7 000 tonnes
- ~ 100 million electronic channels
- ~ 3000 km of cables

Trigger

3 Levels. 40 MHz → 200 Hz

3.8T superconducting solenoid envelops

• Tracker (silicon and strip det.) | η| <2.5

 ECAL (PbWO₄ crystals)
 HCAL (brass¢intill. samplers)

Barrel |η| <1.48 Endcap 1.48<|η| <3.0

• Muon Chambers -gas ionization det. in steel return yoke outside the solenoid |ŋ| <24 Drift Tubes, Cathode Stripe and Resistive Plate Chambers

• Higgs does not couple to photons

Data analysis:

- multivariate analysis used for selection and classification of events
- multivariate analysis uses the following criteria
 - γ : shower shape (for ECAL calibration $Z \rightarrow ee$ is used), isolation variables (sum of transverse momentum in distance of photon candidate), kinematics: reconstr. in ECAL 1.44 < $|\eta| < 1.57$, $p_T^{\tau 1} > \frac{m_\gamma \gamma}{3}$ and $p_T^{\gamma 2} > \frac{m_\gamma \gamma}{4}$
 - the expected mass resolution
 - the reconstructed primary vertex of diphoton
 - if dijets are measured (from VBF): p_{T} thresholds at 30 and 20 GeV, η separation > 3.5, invariant mass of dijets> 350 GeV or 500 GeV ("tight"), angular cuts in relation to diphoton system

Event classification and expected number of events:

Event		SM I	Background							
categories							$\sigma_{\rm eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \text{ GeV}$	
Ű		Events	ggH	VBF	VH	ttH	(GeV)	(GeV)	(events/GeV)	
7 TeV, 5.1 fb ⁻¹	BDT 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4	
	BDT 1	16.3	88%	6%	6%	-	1.26	1.08	37.5 ± 1.3	
	BDT 2	21.5	92%	4%	4%	-	1.59	1.32	74.8 ± 1.9	
	BDT 3	32.8	92%	4%	4%	-	2.47	2.07	193.6 ± 3.0	
	Dijet tag	2.9	27%	72%	1%	-	1.73	1.37	1.7 ± 0.2	
$8 {\rm TeV}$, 5.3 ${\rm fb}^{-1}$	BDT 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6	
	BDT 1	21.0	87%	6%	6%	1%	1.53	1.31	54.7 ± 1.5	
	BDT 2	30.2	92%	4%	4%	-	1.94	1.55	115.2 ± 2.3	
	BDT 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4	
	Dijet tight	2.6	23%	77%	-	-	2.06	1.57	1.3 ± 0.2	
	Dijet loose	3.0	53%	45%	2%	-	1.95	1.48	3.7 ± 0.4	

Decay mode: $H \rightarrow \gamma \gamma$

- invariant mass fitted for each event category with polynomial functions with degree ranges from 3-5 (potential bias is smaller than stat. accuracy)
- independent sideband-background model and cross-check analyses were performed
- events are weighted according to event category

Figure 3: The diphoton invariant mass distribution with each event weighted by the S/(S + B) value of its category. The lines represent the f tted background and signal, and the coloured bands represent the ± 1 and ± 2 standard deviation uncertainties in the background estimate. The inset shows the central part of the unweighted invariant mass distribution.

 p-value: "probability for a background fluctuation to be at least as large as the maximum excess"

Decay mode: $H \rightarrow ZZ^{(*)} \rightarrow 4I$

- 3 subchannel: 4e, 2e2 μ , 4 μ
- 2 pair of same-flavour, opposite charge leptons required
- e: $p_T > 7 {\rm GeV}, \, |\eta| < 2.5$, shower shape (ECAL), isolated, inner tracker and ECAL info combined
- μ : $p_T > 5 {
 m GeV}$, $|\eta| <$ 2.4, isolated, inner tracker and μ spectrometer info combined
- electron and muon should originate from same primary vertex
- cut on invariant mass of leptons: 40-120 GeV
- background: direct ZZ production (irreducible), Z + bb, tt, Z+jets, WZ+jets (reducible: jets are misidentified as leptons)
- background simulated with MC
- three final states and two data sets: 6 simultaneous two dimensional maximum-likelihood fits are performed with m_{4I} and K_D (kinematic discriminant = $P_{sig}/(P_{sig} + P_{bkg})$)

Decay mode: $H \rightarrow ZZ^{(*)} \rightarrow 4I$

 $m_{4\,\mu}{=}$ 124 .6 G eV, $m_{ee}{=}$ 76.8 G eV, $m_{\mu\,\mu}{=}$ 45.7 G eV

- 2 isolated, oppositely charged leptons (ee, $e\mu$, $\mu\mu$)
- large E_T^{miss} (due to neutrinos) transverse momentum of all final state particles should cancel if no non-interacting particle is produced
- $\bullet\,$ event classification according to number of jets (0,1,2) and lepton flavours
- p_T thresholds for leptons and jets
- background: direct WW production (irreducible), reducible: W+jets (misidentified jet as lepton), same flavour category (Drell-Yan, top-quark decays) through E_T^{miss} and b-jet tagging
- b-jet tagging: look within jet for particles that originate from a different place where the bottom quark was formed, jets are wider, have higher multiplicity, higher transverse momentum
- data is analyzed with boosted decision trees for Higgs boson mass hypothesis

Category:	0-jet eµ	0-jet	1-jet eµ	1-jet	2-jet eµ	2-jet
WW	87.6 ± 9.5	60.4 ± 6.7	19.5 ± 3.7	9.7 ± 1.9	0.4 ± 0.1	0.3 ± 0.1
$WZ + ZZ + Z\gamma$	2.2 ± 0.2	37.7 ± 12.5	2.4 ± 0.3	8.7 ± 4.9	0.1 ± 0.0	3.1 ± 1.8
Тор	9.3 ± 2.7	1.9 ± 0.5	22.3 ± 2.0	9.5 ± 1.1	3.4 ± 1.9	2.0 ± 1.2
W + jets	19.1 ± 7.2	10.8 ± 4.3	11.7 ± 4.6	3.9 ± 1.7	0.3 ± 0.3	0.0 ± 0.0
Wγ ^(*)	6.0 ± 2.3	4.6 ± 2.5	5.9 ± 3.2	1.3 ± 1.2	0.0 ± 0.0	0.0 ± 0.0
All backgrounds	124.2 ± 12.4	115.5 ± 15.0	61.7 ± 7.0	33.1 ± 5.7	4.1 ± 1.9	5.4 ± 2.2
Signal ($m_H = 125 \text{ GeV}$)	23.9 ± 5.2	14.9 ± 3.3	10.3 ± 3.0	4.4 ± 1.3	1.5 ± 0.2	0.8 ± 0.1
Data	158	123	54	43	6	7

Figure 7: Distribution of m for the zero-jet $e\mu$ category in the H \rightarrow WW search at 8 TeV. The signal expected from a Higgs boson with a mass m_{H} = 125 GeV is shown added to the background.

m_H (GeV)

Figure 10: The 95% CL limit on the signal strength σ/σ_{SM} for a Higgs boson decaying to τ pairs, for the combined 7 and 8 TeV data sets. The symbol σ/σ_{SM} denotes the production cross section times the relevant branching fractions, relative to the SM expectation. The background-only expectations are represented by their median (dashed line) and by the 68% and 95% CL bands. The dotted curve shows the median expected limit for a SM Higgs boson with $m_{H} = 125 \text{ GeV}$.

- largest branching fraction, but high background from QCD production of bb
- use Higgs production with W(II, $l\nu$) or Z(II, $\nu\nu$) \rightarrow look for dijets with high p_T , $\nu\nu$: high E_T^{miss}
- two b-jets from Higgs decay (use trained BDT algorithm)
- background contribution: W/Z+bjets (from top quarks)

Figure 12: The 95% CL limit on the signal strength σ/σ_{SM} for a Higgs boson decaying to two b quarks, for the combined 7 and 8 TeV data sets. The symbol σ/σ_{SM} denotes the production cross section times the relevant branching fractions, relative to the SM expectation. The background-only expectations are represented by their median (dashed line) and by the 68% and 95% CL bands. The dotted curve shows the median expected limit for a SM Higgs boson with $m_{\rm H} = 125$ GeV.

Hypothesis testing and exclusion limits

- b: Try to reject the null hypothesis (e.g. only background hypothesis, No Higgs \rightarrow test background compatibility)
- s+b: data consistent with Higgs+SM-background (exclusion test, limit)
- calculate CL_S: define probability density function $-2ln(\frac{L(s+b)}{L(b)})$, L(μ , θ) being likelihood function for hypothesis
- to access whether the measured data are compatible with hypothesis, a test statistic is constructed, $CL_S = \frac{p_{S+b}}{1-p_h}$
- if $CL_S < 5\%$, the SM Higgs boson is excluded with 95% confidence level.

Significance of results

