

4th ARD ST3 Workshop – Matter and Technology

Status and Applications of Superconducting Radio-Frequency (SRF) Photoinjectors

Eva Panofski

- 1) SRF Photoinjector
- 2) Energy Recovery Linac (ERL) application bERLinPro
- 3) Summary and outlook of ERL application
- 4) Ultrafast Electron Diffraction (UED) application
- 5) Summary and outlook of UED application

SRF Photoinjectors

Courtesy D. Kostin

D. Kostin, et al., presented at SRF 2015

Features of SC cavities

- Potential for high cathode gradient (several tens of MV/m)
- cw operation at 100% duty cycle possible
- relatively young technology
 - \rightarrow more experimental setups
- control of multipacting and dark current from field emission
 - implications due to high QE cathode/ SRF cavity interface
 - \rightarrow impact on cavity performance

bERLinPro = <u>B</u>erlin <u>E</u>nergy <u>R</u>ecovery <u>L</u>inac <u>Proj</u>ect

- Goal: Build and operate a 100 mA, low emittance technology demonstrater
- Target parameters flexible but geared towards light source application

Max. beam energy Max. average current Normalized emittance Bunch length 50 MeV 100 mA (77pC at 1.3 GHz) < 1mm mrad < 2 ps

GUNLAB – SRF PHOTOINJECTOR TEST FACILITY FOR BERLINPRO

GUNLAB – SRF PHOTOINJECTOR TEST FACILITY FOR BERLINPRO

PHOTOCATHODE R&D FOR BERLINPRO

Courtesy J. Kühn, M. A. H. Schmeißer, H. Kirschner, T. Kamps

PHOTOCATHODE R&D FOR BERLINPRO

- Started cathode R&D in 2010
- Initial work on SC Pb photocathode for Gun 0 (QE treatment (laser cleaning), surface roughness, material science methods)
- In parallel design, construction and setup of a preparation and analysis chamber (XPS, momentatron, mass spectrometer, spectral response)
- System now in operation
 - → Producing CsK₂Sb photocathodes with QE > 5% at 532 nm (within bERLinPro specs)

Drive laser for GunLab is in operation since 2010, major upgrade in 2014 (auto-correlator

- Development of drive laser for bERLinPro on-going
- Goals: Output power: 50 W at 515 nm (→ 100W at IR), Pulse length: 3...12 ps rms, Rep rate 1.3 GHz
- Various operation modes for commissioning and reaching 100 mA

Gun System No.	Cavity	Cathode	Interface	Achievements / Goals
Gun0 2010 - 2013	0.1: 1.6cell with standard TESLA geometry	Pb 10 ⁻⁴ at UV	Pb film coated on backwall by plasmonic arc deposition	First beam, Emittance studies, Cathode QE studies and manipulation with laser cleaning
	0.2: 1.6cell with standard TESLA geometry	Pb	Plug with Pb film fitted into hole of cavity backwall	Emittance studies, Beam energy of 2.5 MeV (27 MV/m)
Gun1	1.1: 1.4cell optimized for ERL class gun with CW coupler	CsK2Sb 10 ⁻² at Green	Electrically and thermially insulated cathode insert	High brightness beam from high QE cathode up to 5 mA
	1.2: 1.4cell as 1.1	CsK2Sb	Cathode insert	
Gun2	2.1: 1.4cell optimized for ERL class gun with high power coupler	CsK2Sb or other multi- alkali	Cathode insert	High average current up to 100 mA
	2.n:			

Courtesy T. Kamps

First results for gun cavity 1.1

complete cold string

 $E_{o} = 30 \text{ MV/m}$ $E_{peak} = 57.3 \text{ MV/m}$ $B_{peak} = 110.4 \text{ mT}$

2.5 MeV, Q₀=5.3[.]10⁹@ 1.8k Satisfactory

BEAM DIAGNOSTICS

In operation since 2010, with major upgrades \leq 2016

- Fast emittance scanner with cos(θ) coils and slit mask
- Spectrometer dipole for longitudinal phase mapping
- Transverse deflecting cavity (TCAV) to measure longitudinal phase space (σ_t , σ_E) and slice emittance (will be installed in 2107)
- Screens/Faraday Cup

can run with: \rightarrow beam energy up to 3.5 MeV

- \rightarrow pulse length \leq 6 ps rms
- \rightarrow bunch charge \leq 200 pC at \leq 10 kHz repetition rate

OPTIMIZATION OF SRF PHOTOINJECTOR

bERLinPro

Parameter	Value
Beam energy	50 MeV
Beam current	100 mA
Bunch charge	77 pC
Bunch length	< 2 ps
Emittance	< 1 mm mrad

OPTIMIZATION OF SRF PHOTOINJECTOR

- Multi-objective optimization of SRF gun design and set parameters
- Minimize transv. emittance and bunch length at 77 pC bunch charge
- six free parameters at fixed gun gradient
- MATLAB programme with SPEA2 algorithm and interface to ASTRA for particle tracking

Next Step: Replace ASTRA with actual gun measurement

FIRST RESULTS WITH MULTI-OBJECTIVE OPTIMIZATION

The lower limit of the Pareto optimum is given by the maximum gradient reached in the gun cavity (\rightarrow gun design)

SUMMARY – SRF GUN FOR ERL APPLICATION

- GunLab is a compact test facility for SRF Photoinjectors
- Gun 0 provided emittance studies and demonstrated an acceleration up to 2.5 MeV
- Gun 1 design fulfils the bERLinPro parameters
- Goal Gun 1: High brightness beam from high QE photocathode
- Goal Gun 2: High average current up to 100 mA

Next steps:

- Complete setup of Gun 1 will be finished November 2016
- First electron beam winter 2016
- Transverse deflecting cavity will be added to the diagnostic beamline in 2017
- Further multi-objective optimization, phase space studies for Gun 1
- First measurements to varify optimization results and adjust the optimization model

SRF GUN FOR ULTRAFAST ELECTRON DIFFRACTION (UED)

Fig. 2. Cross-sectional view of the experimental apparatus-glass bulb not shown.

- ✓ Enable ultrafast science → time resolved structural dynamics
- ✓ Higher cross section for electrons compared to photons ($\sigma_T / \sigma_R \sim 10^5$)
- Electrons preferred choice for surfaces, thin films, gas phase
- ✓ Less damage in biological samples
- ✓ Polarized probe electrons possible

Challenging accelerator physics

- Beam dynamics at low charge and short pulse length
- Synchronization
- Beam instrumentation
- Close interaction between accelerator scientists and user, single user experiment

HOW TO GENERATE AN ELECTRON BEAM FOR UED

diagnostics

MULTI-OBJECTIVE OPTIMIZATION FOR ULTRAFAST ELECTRON DIFFRACTION

laser spot size	0,12 mm	
laser pulse length	75,59 fs	
cathode position	0 mm	
gun phase (rel. to crest)	-41,35 °	
gun peak field	20 MV/m	
solenoid position	0,55 m	
solenoid field	0,01 T	

Bunch compression by a factor of 2

SUMMARY – SRF GUN FOR UED APPLICATION

- Different setup possibilities for UED with SRF photoinjector
 fs drive laser + SRF gun system + manipulator should be a good choice
- Promising results for fs laser and current SRF gun design [bunch length < 50 fs]
- Cooperation with Max Born Institute (Berlin) on user experiment is planned

RED project (relativistic electron diffraction)

OUTLOOK – SRF GUN FOR UED APPLICATION

Next steps:

- Bunch compression studies for fs electron pulses:
 - Multi-objective optimization for UED application using a manipulator (buncher cavity, dogleg)
 - Beam dynamics studies for continuous time-resolved UED using the transverse deflecting cavity in the diagnostics beamline
- Find suitable diagnostic tools for (slice) emittance, beam size and bunch length measurements
- First test measurements with the transverse deflecting cavity
 - \rightarrow Add sample chamber and detector to the GunLab beamline

OUTLOOK – SRF GUN FOR UED APPLICATION

First test measurements with the transverse deflecting cavity \rightarrow Add sample chamber and detector to the GunLab beamline

http://www.sciencedirect.com/science/article/pii/S016890021000210X

The bERLinPro project team:

M. Abo-Bakr, W. Anders, A. Büchel, K. Bürkmann-Gehrlein, V. Dürr, A. Frahm, S. Heling, A. Jankowiak, H. W. Glock, T. Kamps, G. Klemz, J. Knobloch, J. Kolbe, G. Kourkafas, J. Kühn, O. Kugeler, B. Kuske, P. Kuske, A. Matveenko, A. Meseck, G. Meyer, R. Müller, A. Neumann, N. Ohm, S. Rotterdam, J. Rudolph, F. Pfloksch, M. Schmeisser, K. Ott, J. Rahn, J. Völker

The RED project team at HZB:

T. Kamps, G. Klemz, G. Kourkafas, J. Kühn, M.A.H. Schmeißer, J. Völker

Thank you for your attention!