Wall Crossing Invariants from Spectral Networks Pietro Longhi Uppsala University Rethinking Quantum Field Theory DESY, September 28 2016

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Goal of the talk:

A construction of the BPS monodromy for theories of class S, directly from the Coulomb branch geometry.

- Doesn't rely on knowledge of the BPS spectrum
- Manifest wall-crossing invariance

2

・ロト ・回ト ・ヨト ・ヨト

Motivations

- ► The BPS monodromy U is of central importance in wall crossing. It is also a spectrum generating function, BPS state counting follows from knowledge of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].
- Relations to various limits of the superconformal index and counts of chiral operators in the SCFT [Cecotti-Neitzke-Vafa, Iqbal-Vafa, Cordova-Shao, Cecotti-Song-Vafa-Yan].
- \blacktriangleright Graphs encoding $\mathbb U$ are an important link in the Network/Quiver correspondence

э

イロト イヨト イヨト イヨト

On Coulomb branches \mathcal{B} of 4d $\mathcal{N} = 2$ gauge theories gauge symmetry is spontaneously broken to $U(1)^r$.

At generic $u \in \mathcal{B}$ the lightest charged particles are BPS solitons $|\psi\rangle = |\gamma, m\rangle \in \mathscr{H}_u^{\text{BPS}}$ characterized by charge $\gamma \in \mathbb{Z}^{2^{r+f}}$ and spin $j_3 = m$

$$M |\psi\rangle = |Z_{\gamma}| |\psi\rangle, \quad \mathcal{Q}_{\vartheta} |\psi\rangle = 0 \qquad (\vartheta = \operatorname{Arg} Z_{\gamma}).$$

 $Z_{\gamma}(u)$ is topological, linear in γ , locally holomorphic in u. Low energy dynamics on \mathcal{B} is captured by a geometric picture, involving a family of complex curves Σ_u fibered over \mathcal{B} [Seiberg-Witten].

$$\gamma \in H_1(\Sigma_u, \mathbb{Z})$$
 $Z_\gamma = \frac{1}{\pi} \oint_{\gamma} \lambda$

On $\mathbb{R}^3 \times S_R^1$ a 3d σ -model into $\mathcal{M} \to \mathcal{B}$, effective action receives quantum corrections $\sim e^{-2\pi R|Z_\gamma|}$ from BPS particles wrapping S_R^1 . The metric on \mathcal{M} therefore encodes the BPS spectrum, which can be extracted with geometric tools like spectral networks [Gaiotto-Moore-Neitzke]. BPS particles interact, forming boundstates

$$E_{bound} = |Z_{\gamma_1 + \gamma_2}| - |Z_{\gamma_1}| - |Z_{\gamma_2}| \le 0$$

Boundstates form/decay at *codim*_R-1 marginal stability loci

$$MS(\gamma_1, \gamma_2) := \{ u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_1}(u) = \operatorname{Arg} Z_{\gamma_2}(u) \}$$

Jumps of the BPS spectrum are controlled by an ${\rm Arg}\,Z_{\gamma}$ -ordered product of quantum dilogarithms [Kontsevich-Soibelman]

$$\prod_{\gamma,m}^{\operatorname{Arg}Z(u)\nearrow} \Phi((-y)^m Y_{\gamma})^{\mathfrak{a}_m(\gamma,u)} = \prod_{\gamma,m}^{\operatorname{Arg}Z(u')\nearrow} \Phi((-y)^m Y_{\gamma})^{\mathfrak{a}_m(\gamma,u')}$$

► non-commutative: DSZ-twisted product $Y_{\gamma_1} Y_{\gamma_2} = y^{\langle \gamma_1, \gamma_2 \rangle} Y_{\gamma_1 + \gamma_2}$

▶ BPS degeneracies $a_m(\gamma, u) = (-1)^m \dim \mathscr{H}_{u,\gamma,m}^{BPS}$ count $|\gamma, m\rangle$

BPS particles interact, forming boundstates

$$E_{bound} = |Z_{\gamma_1 + \gamma_2}| - |Z_{\gamma_1}| - |Z_{\gamma_2}| \le 0$$

Boundstates form/decay at *codim*_R-1 marginal stability loci

$$MS(\gamma_1, \gamma_2) := \{ u \in \mathcal{B} \mid \operatorname{Arg} Z_{\gamma_1}(u) = \operatorname{Arg} Z_{\gamma_2}(u) \}$$

Jumps of the BPS spectrum are controlled by an ${\rm Arg}\,Z_{\gamma}$ -ordered product of quantum dilogarithms [Kontsevich-Soibelman]

$$\prod_{\gamma,m}^{\operatorname{Arg}Z(u)\nearrow} \Phi((-y)^m Y_{\gamma})^{\mathfrak{a}_m(\gamma,u)} = \prod_{\gamma,m}^{\operatorname{Arg}Z(u')\nearrow} \Phi((-y)^m Y_{\gamma})^{\mathfrak{a}_m(\gamma,u')} \equiv \mathbb{U}$$

► non-commutative: DSZ-twisted product $Y_{\gamma_1} Y_{\gamma_2} = y^{\langle \gamma_1, \gamma_2 \rangle} Y_{\gamma_1 + \gamma_2}$

▶ BPS degeneracies $a_m(\gamma, u) = (-1)^m \dim \mathscr{H}_{u,\gamma,m}^{BPS}$ count $|\gamma, m\rangle$

2d-4d system:

- 2d $\mathcal{N} = (2, 2)$ theory on $\mathbb{R}^{1,1} \subset \mathbb{R}^{1,3}$
- \blacktriangleright chiral matter in a representation of a global symmetry G
- ▶ 4d vector multiplets couple to 2d chirals, gauging G

Vevs of 4d VM scalars on \mathcal{B} correspond to twisted masses for 2d chirals. Therefore Coulomb moduli control the 2d effective superpotential $\widetilde{W}(u)$. For u generic, $\widetilde{W}(u)$ has a finite number of massive vacua $\widetilde{W}_i(u)$, i = 1, ..., d.

2d-4d BPS states: BPS field configurations interpolating between vacua (ij) on the defect, carrying both topological (2d) and flavor (4d) charges

$$Z_{ij,\gamma}(u) \sim \widetilde{W}_j(u) - \widetilde{W}_i(u) + Z_{\gamma}(u), \qquad M_{ij,\gamma} = |Z_{ij,\gamma}|.$$

[Hanany-Hori, Dorey, Gaiotto, Gaiotto-Moore-Neitzke, PL, Gaiotto-Gukov-Seiberg]

6 / 12

2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua \mathcal{B} . Both the chiral ring and central charges $Z_{ij,\gamma}$ depend on u, through $\widetilde{W}(u)$.

2d-4d wall-crossing : The 2d-4d BPS spectrum also depends on u, because marginal stability occurs when $Z_{ij,\gamma}(u) || Z_{jk,\gamma'}(u)$.

æ

イロン イ団と イヨン イヨン

2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua \mathcal{B} . Both the chiral ring and central charges $Z_{ij,\gamma}$ depend on u, through $\widetilde{W}(u)$.

2d-4d wall-crossing : The 2d-4d BPS spectrum also depends on u, because marginal stability occurs when $Z_{ij,\gamma}(u) || Z_{jk,\gamma'}(u)$.

$$F(\vartheta, u) = \sum_{ij,\gamma} \Omega(\vartheta, u, ij, \gamma; y) Y_{ij,\gamma}$$

Formal generating series of 2d-4d BPS states preserving $\mathcal{Q}_{\vartheta}.$

Piecewise-constant in ϑ ; jumps across 2d-4d BPS rays, at phases $\operatorname{Arg} Z_{ij,\gamma}$

$$F(\vartheta', u) = \left[\prod \Phi((-y)^m Y_{ij,\gamma})^{\mathfrak{a}_m(ij,\gamma)}\right] F(\vartheta, u) \left[\prod \Phi((-y)^m Y_{ij,\gamma})^{\mathfrak{a}_m(ij,\gamma)}\right]^{-1}$$

[Gaiotto-Moore-Neitzke]

<ロト <回ト < 回ト < 回ト

2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua \mathcal{B} . Both the chiral ring and central charges $Z_{ij,\gamma}$ depend on u, through $\widetilde{W}(u)$.

2d-4d wall-crossing : The 2d-4d BPS spectrum also depends on u, because marginal stability occurs when $Z_{ij,\gamma}(u) || Z_{jk,\gamma'}(u)$.

$$F(\vartheta, u) = \sum_{ij,\gamma} \Omega(\vartheta, u, ij, \gamma; y) Y_{ij,\gamma}$$

Formal generating series of 2d-4d BPS states preserving $\mathcal{Q}_\vartheta.$

Piecewise-constant in ϑ ; jumps across 2d-4d BPS rays, at phases $\operatorname{Arg} Z_{ij,\gamma}$

$$F(\vartheta',u) = \left[\prod \Phi((-y)^m Y_{ij,\gamma})^{\mathfrak{a}_m(ij,\gamma)}\right] F(\vartheta,u) \left[\prod \Phi((-y)^m Y_{ij,\gamma})^{\mathfrak{a}_m(ij,\gamma)}\right]^{-1}$$

[Gaiotto-Moore-Neitzke]

The 2d-4d degeneracies $a_m(ij, \gamma)$ control jumps in ϑ (at fixed u). Conversely, comparing $F(\vartheta, u)$ to $F(\vartheta + \pi, u)$ gives the whole 2d-4d spectrum at u:

$$F(\vartheta + \pi, u) = \mathbb{U}_{2d-4d}F(\vartheta, u)\mathbb{U}_{2d-4d}^{-1}$$

DESY · 09-2016

イロト イヨト イヨト イヨト

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the Gaiotto (class S) curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle θ
- Edges carry soliton data counting 2d-4d BPS states. a_m(ij, γ) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

• • • • • • • • • • • •

1. For **canonical defects** of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the Gaiotto (class S) curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. a_m(ij, γ) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

(varying ϑ , *u* fixed)

• • • • • • • • • • • •

1. For **canonical defects** of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the Gaiotto (class S) curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. a_m(ij, γ) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

(varying ϑ , *u* fixed)

• • • • • • • • • • • • •

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the Gaiotto (class S) curve

- The shape of a network is controlled by the geometry of Σ_u, and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. a_m(ij, γ) determined by global topology
- Finite edges appear at θ = ArgZ_γ, corresponding to 4d BPS states

(varying ϑ , *u* fixed)

• • • • • • • • • • • • •

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the Gaiotto (class S) curve

- The shape of a network is controlled by the **geometry** of Σ_{μ} , and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. $a_m(ij, \gamma)$ determined by global topology
- Finite edges appear at $\vartheta = \operatorname{Arg} Z_{\gamma}$, corresponding to 4d BPS states

[Gaiotto-Moore-Neitzke]

イロト イヨト イヨト イヨト

1. For canonical defects of Class S theories, the generating function $F(\vartheta, u)$ is computed by the combinatorics of networks on the Gaiotto (class S) curve

- The shape of a network is controlled by the **geometry** of Σ_{μ} , and by an angle ϑ
- Edges carry soliton data counting 2d-4d BPS states. $a_m(ij, \gamma)$ determined by global topology
- Finite edges appear at $\vartheta = \operatorname{Arg} Z_{\gamma}$, corresponding to 4d BPS states

[Gaiotto-Moore-Neitzke]

Then use spectral networks to compute $F(\vartheta, u)$, $F(\vartheta + \pi, u)$ and obtain \mathbb{U} .

- still choosing a chamber of \mathcal{B} , with some 4d BPS spectrum
- still difficult, due to complexity of 2d-4d wall crossing

<ロ> (日) (日) (日) (日) (日)

Let $\mathcal{B}_c \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$\mathcal{B}_c := \{ u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u) = \operatorname{Arg} Z_{\gamma'}(u) \equiv \vartheta_c(u) \}$$

Because of marginal stability, the 4d BPS spectrum is ill-defined at $u_c \in \mathcal{B}_c$.

Э.

・ロト ・回ト ・ヨト ・ヨト

Let $\mathcal{B}_c \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$\mathcal{B}_c := \{ u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u) = \operatorname{Arg} Z_{\gamma'}(u) \equiv \vartheta_c(u) \}$$

Because of marginal stability, the 4d BPS spectrum is ill-defined at $u_c \in \mathcal{B}_c$. However, the 2d-4d spectrum is still well-defined, because $Z_{ij,\gamma} \neq Z_{\gamma}$.

æ

・ロト ・回ト ・ヨト ・ヨト

Let $\mathcal{B}_c \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$\mathcal{B}_c := \{ u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u) = \operatorname{Arg} Z_{\gamma'}(u) \equiv \vartheta_c(u) \}$$

Because of marginal stability, the **4d BPS spectrum is ill-defined** at $u_c \in \mathcal{B}_c$. However, the **2d-4d spectrum** is still **well-defined**, because $Z_{ij,\gamma} \neq Z_{\gamma}$.

- $F(\vartheta, u_c)$ now has a single jump, occurring at $\vartheta_c(u_c)$
- \blacktriangleright This jump captures the full BPS monodromy $\mathbb U$
- ► The spectral network at (u_c, ϑ_c) is very special. Several finite edges appear simultaneously. Within the network a critical graph emerges.

Let $\mathcal{B}_c \subset \mathcal{B}$ be a locus where central charges of all 4d BPS particles have the same phase

$$\mathcal{B}_c := \{ u \in \mathcal{B}, \operatorname{Arg} Z_{\gamma}(u) = \operatorname{Arg} Z_{\gamma'}(u) \equiv \vartheta_c(u) \}$$

Because of marginal stability, the **4d BPS spectrum is ill-defined** at $u_c \in \mathcal{B}_c$. However, the **2d-4d spectrum** is still **well-defined**, because $Z_{ij,\gamma} \neq Z_{\gamma}$.

- $F(\vartheta, u_c)$ now has a single jump, occurring at $\vartheta_c(u_c)$
- \blacktriangleright This jump captures the full BPS monodromy $\mathbb U$
- ► The spectral network at (u_c, ϑ_c) is very special. Several finite edges appear simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determines \mathbb{U} .

DESY · 09-2016

9 / 12

<ロ> (四)、(四)、(日)、(日)、

DESY · 09-2016

10 / 12

2

<ロ> (日) (日) (日) (日) (日)

DESY · 09-2016

10 / 12

2

ヘロン ヘロン ヘヨン ヘヨン

DESY · 09-2016

10 / 12

2

<ロ> (日) (日) (日) (日) (日)

10 / 12

2

<ロ> (日) (日) (日) (日) (日)

DESY · 09-2016

10 / 12

2

イロト イヨト イヨト イヨト

10 / 12

æ

イロト イヨト イヨト イヨト

2

<ロ> (四)、(四)、(日)、(日)、

P. Longhi

DESY · 09-2016

10 / 12

2

<ロ> (四)、(四)、(日)、(日)、

10 / 12

2

ヘロン ヘロン ヘヨン ヘヨン

DESY · 09-2016

10 / 12

2

<ロ> (四)、(四)、(日)、(日)、

The graph has 2 edges, each contributes an equation

$$Q^{+}(p)\mathbb{U} = \mathbb{U}Q^{-}(p)$$
with
$$Q^{-}(p_{1}) = 1 + Y_{\gamma_{2}}$$

$$Q^{-}(p_{2}) = 1 + Y_{\gamma_{1}} + Y_{\gamma_{1}+\gamma_{2}}$$

$$Q^{+}(p_{1}) = 1 + Y_{\gamma_{2}} + Y_{\gamma_{1}+\gamma_{2}}$$

$$Q^{+}(p_{2}) = 1 + Y_{\gamma_{1}}$$

Together, they determine $\mathbb{U} = \Phi(Y_{\gamma_1})\Phi(Y_{\gamma_2}) = \Phi(Y_{\gamma_2})\Phi(Y_{\gamma_1+\gamma_2})\Phi(Y_{\gamma_2}).$

10 / 12

= 990

・ロト ・個ト ・ヨト ・ヨト

Second Example: $SU(2) N = 2^*$

The graph has three edges p_1 , p_2 , p_3 ; each contributes one equation

$$Q^+(p)\mathbb{U} = \mathbb{U}Q^-(p)$$

with

$$\begin{aligned} Q^{-}(p_{1}) &= \frac{1+Y_{\gamma_{1}}+(y+y^{-1})Y_{\gamma_{1}+\gamma_{3}}+Y_{\gamma_{1}+2\gamma_{3}}+(y+y^{-1})Y_{\gamma_{1}+\gamma_{2}+2\gamma_{3}}+Y_{\gamma_{1}+2\gamma_{2}+2\gamma_{3}}+Y_{2\gamma_{1}+2\gamma_{2}+2\gamma_{3}}}{(1-Y_{2\gamma_{1}+2\gamma_{2}+2\gamma_{3}})^{2}} \\ Q^{+}(p_{1}) &= \frac{1+Y_{\gamma_{1}}+(y+y^{-1})Y_{\gamma_{1}+\gamma_{2}}+Y_{\gamma_{1}+2\gamma_{2}}+(y+y^{-1})Y_{\gamma_{1}+2\gamma_{2}+2\gamma_{3}}+Y_{\gamma_{1}+2\gamma_{2}+2\gamma_{3}}+Y_{2\gamma_{1}+2\gamma_{2}+2\gamma_{3}}}{(1-Y_{2\gamma_{1}+2\gamma_{2}+2\gamma_{3}})^{2}} \end{aligned}$$

 $Q^{\pm}(p_2)$ & $Q^{\pm}(p_3)$ are obtained by cyclic shifts of $\gamma_1, \gamma_2, \gamma_3$.

The solution:

$$\mathbb{U} = \left(\prod_{n\geq 0}^{\nearrow} \Phi\left(Y_{\gamma_{1}+n(\gamma_{1}+\gamma_{2})}\right)\right) \times \Phi\left(Y_{\gamma_{3}}\right) \Phi\left((-y)Y_{\gamma_{1}+\gamma_{2}}\right)^{-1} \Phi\left((-y)^{-1}Y_{\gamma_{1}+\gamma_{2}}\right)^{-1} \Phi\left(Y_{2\gamma_{1}+2\gamma_{2}+\gamma_{3}}\right) \times \left(\prod_{n\geq 0}^{\searrow} \Phi(Y_{\gamma_{2}+n(\gamma_{1}+\gamma_{2})})\right)$$

H 5

・ロト ・日下・ ・ ヨト・

1. To a class S theory associate a **canonical "critical graph"** on the Gaiotto curve, emerging from a degenerate spectral network at \mathcal{B}_c .

2. The graph's topology + framing encode equations that characterize the BPS monodromy \mathbb{U} .

3. Manifestly invariant under wall-crossing: the critical locus \mathcal{B}_c is the **intersection of marginal stability walls**, the BPS spectrum is ill-defined and we never need to compute it. In fact this is generally **simpler** than building \mathbb{U} by computing BPS spectra.

э