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Goal of the talk:

A construction of the BPS monodromy for theories of class S,
directly from the Coulomb branch geometry.

» Doesn’t rely on knowledge of the BPS spectrum

» Manifest wall-crossing invariance
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Motivations

» The BPS monodromy U is of central importance in wall crossing. It is also
a spectrum generating function, BPS state counting follows from
knowledge Of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].

> Relations to various limits of the superconformal index and counts of chiral
operators in the SCFT [Cecotti-Neitzke-Vafa, Igbal-Vafa, Cordova-Shao,

Cecotti-Song-Vafa-Yan].

» Graphs encoding U are an important link in the Network/Quiver
correspondence
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On Coulomb branches B of 4d N = 2 gauge theories gauge symmetry is
spontaneously broken to U(1)".

At generic u € I3 the lightest charged particles are BPS solitons
[9) = |, m) € AP characterized by charge v € Z*** and spin j3 = m

M) =1Z,|1¢), Qolp) =0 (I =ArgZy).

Z.,(u) is topological, linear in ~, locally holomorphic in wu.
Low energy dynamics on B is captured by a geometric picture, involving a
family of complex curves ¥, fibered over B [sciberg-Witten].

vEH(TwZ)  Zy=1§ A
On R® x S} a 3d o-model into M — B, effective action receives quantum
corrections ~ e~ 2"RIZ| from BPS particles wrapping S.
The metric on M therefore encodes the BPS spectrum, which can be extracted
with geometric tools like spectral networks [Gaiotto-Moore-Neitzke].
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BPS particles interact, forming boundstates
Evound = |Zy 44, — |21 | — 125,] <0
Boundstates form/decay at codimgr-1 marginal stability loci
MS(m1,72) :={u € B | ArgZy, (u) = ArgZ,, (u)}

Jumps of the BPS spectrum are controlled by an Arg Z,-ordered product of
quantum dilogarithms [Kontsevich-Soibelman]

ArgZ(u) ArgZ(u') N /
IT ey = T ey
v,m o

> non-commutative: DSZ-twisted product Y., Y., = yOr 2y,

» BPS degeneracies am(7, u) = (—1)"dim.#53, count |, m)
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Surface defects as 2d-4d systems

2d-4d system:
» 2d N = (2,2) theory on R** C R'?
> chiral matter in a representation of a global symmetry G

» 4d vector multiplets couple to 2d chirals, gauging G

Vevs of 4d VM scalars on B correspond to twisted masses for 2d chirals.
Therefore Coulomb moduli control the 2d effective superpotentlal W( ).

For u generic, W(u) has a finite number of massive vacua Wi(u), i =1,...,d.

2d-4d BPS states: BPS field configurations interpolating between vacua (if)
on the defect, carrying both topological (2d) and flavor (4d) charges

Zij~(u) ~ Wi(u) — Wi(u) + Zy(u), Mijy = 1Zij ]

[Hanany-Hori, Dorey, Gaiotto, Gaiotto-Moore-Neitzke, PL, Gaiotto-Gukov-Seiberg]
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2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua B.
Both the chiral ring and central charges Z; , depend on u, through W/(u).

2d-4d wall-crossing : The 2d-4d BPS spectrum also depends on u, because
marginal stability occurs when Zj; (u) || Zjx,, (u).
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F('u) = [TT@()"Yin) 07| F@, ) [TT0()"Yin) 7]
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The 2d-4d degeneracies am(ij,y) control jumps in ¥ (at fixed u). Conversely,
comparing F (¥, u) to F(¢ + 7, u) gives the whole 2d-4d spectrum at u:

F(9 4 7, u) = UsgsgF (9, u)Us, 4y
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Spectral Networks

1. For canonical defects of Class S theories, the generating function F (49, u) is
computed by the combinatorics of networks on the Gaiotto (class S) curve

» The shape of a network is controlled by the
geometry of ¥, and by an angle ¥

» Edges carry soliton data counting 2d-4d BPS
states. am(ij,7) determined by global topology

» Finite edges appear at ¥ = ArgZ,,
corresponding to 4d BPS states
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2. Through 2d-4d mixing (boundstates of (ij,~) and (ji,7') carry pure 4d
charge), the 2d-4d spectrum encodes the 4d spectrum: “Uzg_sq O U".

[Gaiotto-Moore-Neitzke]
Then use spectral networks to compute F (¢, u), F(J + 7, u) and obtain U.

o still choosing a chamber of B, with some 4d BPS spectrum
o still difficult, due to complexity of 2d-4d wall crossing
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Marginal Stability

Let B. C B be a locus where central charges of all 4d BPS particles have the
same phase

Be:={ueB, ArgZ,(u) = Arg Z,/(u) = Vc(u)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € B..
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same phase

Be:={ueB, ArgZ,(u) = Arg Z,/(u) = Vc(u)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u. € B..
However, the 2d-4d spectrum is still well-defined, because Zj y # Z,.

> F(9, uc) now has a single jump, occurring at ¥c(uc)
» This jump captures the full BPS monodromy U

» The spectral network at (uc,?.) is very special. Several finite edges
appear simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determines U.

eeae
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First Example: Argyres-Douglas

The graph has 2 edges, each
contributes an equation

QT (p)U=UQ (p)

b 3 P2
with /\

(p) =14Y,
(P2) =1+ Yy + Yo,
Q+(p1) =14 Yy, + Yo4m
Q+(P2) =1+Yy

Q-
Q-
Together, they determine U = ®(Y,, )®(Y,,) = O(Y5,)P(Yyi44,)P(Yy,).
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Second Example: SU(2) N = 2*

The graph has three edges p1, p2, p3;
each contributes one equation

QT (p)U=UQ (p)
with

Q(m) = LYoy (v 4y 1) Yoy v+ Yoy 42 F(rby T ) Yo s t203 1 Yo 4204295+ Youy 120p420g
- 2
(1’ Y2y 42754273 )

—1 —1
Q () = 1Yo (b T ) Yoy sma Yo t29n H (Y 7)) Yo t290 443+ Yo 42701293 Y2 42901273
- 2

(17Y271+2‘rz+273)
Q% (p2) & QF(p3) are obtained by cyclic shifts of 71, 72,73

The solution:
U= (Héo @ (Y’Yl+n("r1+‘r2)))

— _ -1
x® (Y’Ys) @ ((7}/) Y’Yl+’¥2) ! ¢ ((7)/) ! Y’)’1+’YQ) @ (Y2'71+2W2+“r3)

X (Hn\'éo @( Ywﬁn(wﬁwz)))
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Summary

1. To a class S theory associate a canonical “critical graph” on the Gaiotto
curve, emerging from a degenerate spectral network at B..

The graph’s topology + framing encode equations that characterize the
BPS monodromy U.

3. Manifestly invariant under wall-crossing: the critical locus B. is the
intersection of marginal stability walls, the BPS spectrum is ill-defined and
we never need to compute it.

In fact this is generally simpler than building U by computing BPS spectra.
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