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Goal of the talk:

A construction of the BPS monodromy for theories of class S,
directly from the Coulomb branch geometry.

I Doesn’t rely on knowledge of the BPS spectrum

I Manifest wall-crossing invariance
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Motivations

I The BPS monodromy U is of central importance in wall crossing. It is also
a spectrum generating function, BPS state counting follows from
knowledge of U [Kontsevich-Soibelman, Gaiotto-Moore-Neitzke, Dimofte-Gukov].

I Relations to various limits of the superconformal index and counts of chiral
operators in the SCFT [Cecotti-Neitzke-Vafa, Iqbal-Vafa, Cordova-Shao,

Cecotti-Song-Vafa-Yan].

I Graphs encoding U are an important link in the Network/Quiver
correspondence
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On Coulomb branches B of 4d N = 2 gauge theories gauge symmetry is
spontaneously broken to U(1)r .

At generic u 2 B the lightest charged particles are BPS solitons
| i = |�,mi 2 H BPS

u

characterized by charge � 2 Z2r+f and spin j
3

= m

M | i = |Z� | | i , Q#| i = 0 (# = ArgZ�) .

Z�(u) is topological, linear in �, locally holomorphic in u.
Low energy dynamics on B is captured by a geometric picture, involving a
family of complex curves ⌃

u

fibered over B [Seiberg-Witten].

� 2 H
1

(⌃
u

,Z) Z� = 1

⇡

H
�
�

On R3 ⇥ S1

R

a 3d �-model into M ! B, e↵ective action receives quantum
corrections ⇠ e�2⇡R|Z� | from BPS particles wrapping S1

R

.
The metric on M therefore encodes the BPS spectrum, which can be extracted
with geometric tools like spectral networks [Gaiotto-Moore-Neitzke].
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BPS particles interact, forming boundstates

E
bound

= |Z�
1

+�
2

|� |Z�
1

|� |Z�
2

|  0

Boundstates form/decay at codimR-1 marginal stability loci

MS(�
1

, �
2

) := {u 2 B | ArgZ�
1

(u) = ArgZ�
2

(u)}

Jumps of the BPS spectrum are controlled by an ArgZ�-ordered product of
quantum dilogarithms [Kontsevich-Soibelman]

ArgZ(u)%Y
�,m

�((�y)mY�)
a

m

(�,u) =
ArgZ(u

0
)%Y

�,m

�((�y)mY�)
a

m

(�,u0) ⌘ U

I non-commutative: DSZ-twisted product Y�
1

Y�
2

= y h�
1

,�
2

iY�
1

+�
2

I BPS degeneracies a
m

(�, u) = (�1)mdimH BPS

u,�,m count |�,mi
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Surface defects as 2d-4d systems

2d-4d system:

I 2d N = (2, 2) theory on R1,1 ⇢ R1,3

I chiral matter in a representation of a global symmetry G

I 4d vector multiplets couple to 2d chirals, gauging G

Vevs of 4d VM scalars on B correspond to twisted masses for 2d chirals.
Therefore Coulomb moduli control the 2d e↵ective superpotential fW (u).

For u generic, fW (u) has a finite number of massive vacua fW
i

(u), i = 1, . . . , d .

2d-4d BPS states: BPS field configurations interpolating between vacua (ij)
on the defect, carrying both topological (2d) and flavor (4d) charges

Z
ij,�(u) ⇠ fW

j

(u)� fW
i

(u) + Z�(u) , M
ij,� = |Z

ij,� | .

[Hanany-Hori, Dorey, Gaiotto, Gaiotto-Moore-Neitzke, PL, Gaiotto-Gukov-Seiberg]

P. Longhi DESY · 09-2016 6 / 12



2d-4d wall-crossing

2d-4d vacua are fibered nontrivially over the space of 4d vacua B.
Both the chiral ring and central charges Z

ij,� depend on u, through fW (u).

2d-4d wall-crossing : The 2d-4d BPS spectrum also depends on u, because
marginal stability occurs when Z

ij,�(u) ||Z
jk,�0(u).

F (#, u) =
P

ij,� ⌦(#, u, ij , �; y)Yij,�

Formal generating series of 2d-4d BPS states
preserving Q#.
Piecewise-constant in #; jumps across 2d-4d
BPS rays, at phases ArgZ

ij,�

F (#0, u) =
hY

�((�y)mY
ij,�)

a

m

(ij,�)
i
F (#, u)

hY
�((�y)mY

ij,�)
a

m

(ij,�)
i�1

[Gaiotto-Moore-Neitzke]

The 2d-4d degeneracies a
m

(ij , �) control jumps in # (at fixed u). Conversely,
comparing F (#, u) to F (#+ ⇡, u) gives the whole 2d-4d spectrum at u:

F (#+ ⇡, u) = U
2d�4d

F (#, u)U�1

2d�4d
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Spectral Networks

1. For canonical defects of Class S theories, the generating function F (#, u) is
computed by the combinatorics of networks on the Gaiotto (class S) curve

I The shape of a network is controlled by the
geometry of ⌃

u

, and by an angle #

I Edges carry soliton data counting 2d-4d BPS
states. a

m

(ij , �) determined by global topology

I Finite edges appear at # = ArgZ� ,
corresponding to 4d BPS states

(varying #, u fixed)

2. Through 2d-4d mixing (boundstates of (ij , �) and (ji , �0) carry pure 4d
charge), the 2d-4d spectrum encodes the 4d spectrum: “U

2d�4d

◆ U”.
[Gaiotto-Moore-Neitzke]

Then use spectral networks to compute F (#, u), F (#+ ⇡, u) and obtain U.
• still choosing a chamber of B and some 4d BPS states
• still impractical: complexity of 2d-4d wall crossing
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Marginal Stability

Let B
c

⇢ B be a locus where central charges of all 4d BPS particles have the
same phase

B
c

:= {u 2 B , ArgZ�(u) = ArgZ�0(u) ⌘ #
c

(u)}

Because of marginal stability, the 4d BPS spectrum is ill-defined at u
c

2 B
c

.

However, the 2d-4d spectrum is still well-defined, because Z
ij,� 6= Z� .

I F (#, u
c

) now has a single jump, occurring at #
c

(u
c

)

I This jump captures the full BPS monodromy U
I The spectral network at (u

c

,#
c

) is very special. Several finite edges
appear simultaneously. Within the network a critical graph emerges.

The graph topology, together with a notion of framing, determines U.
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First Example: Argyres-Douglas
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First Example: Argyres-Douglas

The graph has 2 edges, each
contributes an equation

Q+(p)U = UQ�(p)

with

Q�(p
1

) = 1 + Y�
2

Q�(p
2

) = 1 + Y�
1

+ Y�
1

+�
2

Q+(p
1

) = 1 + Y�
2

+ Y�
1

+�
2

Q+(p
2

) = 1 + Y�
1

Together, they determine U = �(Y�
1

)�(Y�
2

) = �(Y�
2

)�(Y�
1

+�
2

)�(Y�
2

).
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Second Example: SU(2) N = 2

⇤

The graph has three edges p
1

, p
2

, p
3

;
each contributes one equation

Q+(p)U = UQ�(p)

with

Q�(p
1

) =
1+Y�

1

+(y+y

�1)Y�
1

+�
3

+Y�
1

+2�
3

+(y+y

�1)Y�
1

+�
2

+2�
3

+Y�
1

+2�
2

+2�
3

+Y

2�
1

+2�
2

+2�
3

(1�Y

2�
1

+2�
2

+2�
3

)2

Q+(p
1

) =
1+Y�

1

+(y+y

�1)Y�
1

+�
2

+Y�
1

+2�
2

+(y+y

�1)Y�
1

+2�
2

+�
3

+Y�
1

+2�
2

+2�
3

+Y

2�
1

+2�
2

+2�
3

(1�Y

2�
1

+2�
2

+2�
3

)2

Q±(p
2

) & Q±(p
3

) are obtained by cyclic shifts of �
1

, �
2

, �
3

.

The solution:
U =

⇣Q%
n�0

�
�
Y�

1

+n(�
1

+�
2

)

�⌘
⇥� (Y�

3

)� ((�y)Y�
1

+�
2

)�1 �
�
(�y)�1Y�

1

+�
2

��1

� (Y
2�

1

+2�
2

+�
3

)

⇥
⇣Q&

n�0

�(Y�
2

+n(�
1

+�
2

)

)
⌘
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Summary

1. To a class S theory associate a canonical “critical graph” on the Gaiotto
curve, emerging from a degenerate spectral network at B

c

.

2. The graph’s topology + framing encode equations that characterize the
BPS monodromy U.

3. Manifestly invariant under wall-crossing: the critical locus B
c

is the
intersection of marginal stability walls, the BPS spectrum is ill-defined and
we never need to compute it.
In fact this is generally simpler than building U by computing BPS spectra.
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