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Textbook perturbative gravity:

After symmetrization
100 terms !

=

=

de Donder
gauge

higher order
vertices…

103 terms

complicated diagrams:

104 terms 107 terms 1021 terms



On-shell simplifications
Graviton plane wave:

=

Gravity scattering amplitude:

Yang-Mills polarization

Yang-Mills vertex

Yang-Mills amplitude

On-shell 3-graviton vertex:

Gravity processes = “squares” of gauge theory ones

MGR
tree(1, 2, 3, 4) =

st

u
AYM

tree(1, 2, 3, 4)⌦AYM
tree(1, 2, 3, 4)



Generic gravities are double copies

Amplitudes in familiar theories are secretly related, for example:

(Yang-Mills-Einstein)

(Maxwell-Einstein)

(dilaton-axion)

and many more…

(gauge sym)⌦ (gauge sym) = di↵eo sym



Kawai-Lewellen-Tye Relations (’86)

Field theory limit ⇒ gravity theory ~ (gauge theory) × (gauge theory)

String theory
tree-level identity:

closed string ∼ (left open string) × (right open string)

KLT relations emerge after nontrivial world-sheet integral identities

5

|2i = |1i ⌦ |1ispin-2: “1+1=2”



Generality of double copy
Gravity processes = product of gauge theory ones - entire S-matrix

GravityGauge theory

Recent generalizations:
à Theories that are not truncations of N=8 SG
à Theories with fundamental matter
à Spontaneously broken theories
à Classical (black hole) solutions 
à New double copies for string theory
à CHY scattering eqs, twistor strings  see Geyer’s talk
à Conformal gravity

→

→

“squared”
numerators 

Bern, Carrasco, HJ (’10) 

Mafra, Schlotterer, Stieberger, Taylor, Broedel, Carrasco... 

HJ, Nohle

Luna, Monteiro, Nicholson, O’Connell, White

Chiodaroli, Gunaydin, HJ, Roiban

HJ, Ochirov; Chiodaroli, Gunaydin, Roiban

trees:

loops:

HJ, Ochirov; Chiodaroli, Gunaydin, Roiban



Motivation: (super)gravity UV behavior
Old results on UV properties:

susy forbids 1,2 loop div. R2, R3

Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti, van de Ven

With matter: 1-loop divergent ‘t Hooft & Veltman; (van Nieuwenhuizen; Fischler..) 

New results on UV properties:

N=8 SG and N=4 SG 3-loop finite!

N=8 SG: no divergence before 7 loops

First N=4 SG divergence at 4 loops

Evanescent effects: Einstein gravity 

Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström,
Green, Schwarz, Brink, Marcus, Sagnotti

Bern, Carrasco, Dixon, HJ, Kosower, Roiban; 
Bern, Davies, Dennen, Huang

Beisert, Elvang, Freedman, Kiermaier, Morales, 
Stieberger; Björnsson, Green, Bossard, Howe, 
Stelle, Vanhove Kallosh, Ramond, Lindström, 
Berkovits, Grisaru, Siegel, Russo, and more…. 

Bern, Davies, Dennen, Smirnov, Smirnov
(unclear interpretation, U(1) anomaly?)

N = 1, 2, 3 SG

Double-copy calculations
shed new light on gravity
UV properties!

Einstein

Dissect Goroff & Sagnotti; van de Ven

Bern, Cheung, Chi, Davies, Dixon, Nohle



Intro & motivation

On-shell diffeo. sym. from gauge symmetry

Color-kinematics duality
BCJ relations

Examples of theories

Generalization to conformal (super-)gravity

New dimension-six gauge theory

Deformations and more gravities 

Conclusion

Outline



Amplitudes in a gauge theory

propagators

color factors

kinematic numerators

Consider a gauge transformation

Invariance of            requires that      are linearly dependent 

[Jacobi id. or Lie algebra] 

thus the combination                                                 vanishes. 

cubic diagram form:



Build gravity amplitudes 

Assume the gauge freedom can be exploited to find numerators

dual to the color factors  

Then the double copy 

describes a spin-2 theory 

invariant under (linear) diffeos

= 0

à Gravity



Color-kinematics duality 
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A(L)
n

Color-kinematics duality for pure (S)YM
YM theories are controlled by a hidden kinematic Lie algebra

•Amplitude expanded in terms of cubic graphs:  

Color & kinematic 
numerators satisfy 
same relations:

Jacobi identity

propagators

color factors

kinematic numerators

Bern, Carrasco, HJ 



Gauge-invariant relations (pure glue)

BCJ rels. proven via string theory by Bjerrum-Bohr, Damgaard, Vanhove; Stieberger (’09)

and field theory proofs through BCFW: Feng, Huang, Jia; Chen, Du, Feng (’10 -’11)
Relations used in string calcs: Mafra, Stieberger, Schlotterer, et al. (’11 -’15)

Relations used by Cachazo, He, Yuan to motivate CHY and scattering eqns (’13)

BCJ relations (‘08)
(n-3)! basis

n�1X

i=1

A(1, 2, . . . , i, n, i+ 1, . . . , n� 1) = 0 U(1) decoupling

Kleiss-Kuijf
relations (‘89)

(n-2)! basis

A(1, 2, . . . , n� 1, n) = A(n, 1, 2, . . . , n� 1) cyclicity à (n-1)! basis



Gravity is a double copy of YM

The two numerators can differ by a generalized gauge transformation
à only one copy needs to satisfy the kinematic algebra

The two numerators can differ by the external/internal states
à graviton, dilaton, axion (B-tensor), matter amplitudes

The two numerators can belong to different theories
à give a host of different gravitational theories

Gravity amplitudes obtained by replacing color with kinematics

double copy 
Bern, Carrasco, HJ 

Equivalent to
KLT at tree level
for adj. rep.
and CHY, twistor str
à Geyer’s talk



Which “gauge” theories obey C-K duality

Pure N=0,1,2,4 super-Yang-Mills (any dimension) 

Self-dual Yang-Mills theory O’Connell, Monteiro (’11)

Heterotic string theory Stieberger, Taylor (’14)

Yang-Mills + F 3 theory  Broedel, Dixon (’12)

QCD, super-QCD, higher-dim QCD HJ, Ochirov (’15)

Generic matter coupled to N = 0,1,2,4 super-Yang-Mills

Spontaneously broken N = 0,2,4 SYM

Yang-Mills + scalar ϕ3 theory
Bi-adjoint scalar ϕ3 theory
NLSM/Chiral Lagrangian
D=3 Bagger-Lambert-Gustavsson theory (Chern-Simons-matter)

(Non-)Abelian Z-theory

Bern, Carrasco, HJ (’08)
Bjerrum-Bohr, Damgaard, 
Vanhove; Stieberger; Feng et al.
Mafra, Schlotterer, etc (’08-’11)

Chiodaroli, Gunaydin, 
Roiban; HJ, Ochirov (’14)

Chiodaroli, Gunaydin, HJ, Roiban (’14)
Bern, de Freitas, Wong (’99), Bern, Dennen, Huang; 
Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O’Connell   

Bargheer, He, McLoughlin; Huang, HJ, Lee (’12 -’13)

Chen, Du (’13)

Chiodaroli, Gunaydin, HJ, Roiban (’15)

Carrasco, Mafra, Schlotterer see Schlotterer’s talk



Which “gravity” theories are double copies

Pure N=4,5,6,8 supergravity (2 < D < 11) KLT (‘86), Bern, Carrasco, HJ (’08 -’10)

Einstein gravity and pure N=1,2,3 supergravity HJ, Ochirov (’14)

Self-dual gravity O’Connell, Monteiro (’11)

Closed string theories Mafra, Schlotterer, Stieberger (’11); Stieberger, Taylor (’14)

Einstein + R 3 theory  Broedel, Dixon (’12)

Abelian matter coupled to supergravity
Magical sugra, homogeneous sugra Chiodaroli, Gunaydin, HJ, Roiban (’15)

SYM coupled to supergravity Chiodaroli, Gunaydin, HJ, Roiban (’14)

Spontaneously broken YM-Einstein gravity Chiodaroli, Gunaydin, HJ, Roiban (’15)

D=3 supergravity (BLG Chern-Simons-matter theory)2

Born-Infeld, DBI, Galileon theories (CHY form) Cachazo, He, Yuan (’14)

Conformal gravity  HJ Nohle (‘16)

Bargheer, He, McLoughlin; 
Huang, HJ, Lee (’12 -’13)

Carrasco, Chiodaroli, Gunaydin, Roiban (‘12)
HJ, Ochirov (’14 - ’15)



Magical and homogeneous SUGRAs
Maxwell-Einstein 5d supergravity theories
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IJ

@
x

⇠I@
y

⇠J

Gunaydin, Sierra, Townsend

Everything is determined by a prepotential parameterized by  

Describe scalar manifold           as hypersurface in ambient space 

⇠ = (�x, ⇢)

Chiodaroli, Gunaydin, 
HJ, Roiban (‘15)



Conformal Gravity
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Double copy for conformal gravity?
How to obtain conformal gravity and supersymmetric extensions?

HJ, Nohle

4-derivative action 

(Weyl)2

à negative-norm states  à non-unitary
(but renormalizable)

propagator 2 + 5 − 1 states:
- graviton: 2+2
- vector: 2 

Double copy ? 

marginal in D=6 marginal in D=4

K. Stelle (‘77)

(dimensional analysis)



Dimension-six gauge theory

Two dim-6 operators: 

correct        propagator
but trivial S-matrix

3pt double copy is promising:

(3-graviton amplitude vanish = Gauss-Bonnet term)

HJ, Nohle



Dimension-six gauge theory

4pt ampl:

Check color-kinematics duality (BCJ relation):

Missing contribution:

new dim-6 operator!

Candidate theory:

Add scalar, new operators:

HJ, Nohle



Ansatz for dimension-six theory

scalar in some real representation of gauge group (not adjoint)

This modification is consistent with the Kleiss-Kuijf identity,

A(1�, 2�, 3+, 4+) +A(2�, 1�, 3+, 4+) +A(1�, 3+, 2�, 4+) = 0 , (3.11)

and the left-hand-sides of eq. (3.8) are modified by �(t� u) = �(�2u� s), which exactly

cancels the unwanted terms in the BCJ relations.

Looking at the reside of the pole in eq. (3.9) it is clear that the term we added corre-

sponds to a propagating scalar with a factorization into two three-point amplitudes corre-

sponding to the operator 'F 2. Indeed, in D = 6 this operator has engineering dimension

six, given that the scalar has a regular two-derivative kinetic term, as the pole suggest.

Given than we have a scalar in the spectrum, there is one more operator of dimension

six that we can write down, namely '3. Thus we expect a Lagrangian of the schematic

form (DF )2 + F 3 + (D')2 + 'F 2 + '3. However, the last two terms would vanish if

we are dealing with an adjoint scalar that only couples through the fabc structure con-

stants. The non-vanishing of these terms seems to imply a coupling through the tensor

dabcF = Tr({T a, T b}T c); however, this cannot explain why an s-channel diagram shows up

in the color order A(1�, 3+, 2�, 4+). Furthermore, the scalar cannot be a singlet under

the gauge group since then the term in eq. (3.9) would not contribute to the single-trace

tr(T a1T a2T a3T a4) at four points. Nor can the scalar carry any charge or flavor indices not

belonging to the gauge group, since it is sourced by the field strength.

We are forced to assume that the scalar is in some unknown representation of the

gauge group. Let us denote the indices of this representation by ↵,�, �, . . ., so that the

scalar is '↵. The new ansatz for the dimension-six gauge theory is now

L =
1

2
(DµF

aµ⌫)2+
1

3!
⇢gF 3+

1

2
(Dµ'

↵)2+
1

4
�g C↵ab'↵F a

µ⌫F
b µ⌫+

1

3!
⌧g d↵��'↵'�'� (3.12)

where ⇢,�, ⌧ are unknown parameters, and C↵ab and d↵�� are group-theory tensors to be

determined. From their appearance in the Lagrangian it is clear that we can choose C↵ab

to be symmetric in its last two indices and similarly choose d↵�� to be a totally symmetric

tensor. In the covariant derivative of the scalar

Dµ'
↵ = @µ'

↵ � ig(T a)↵�Aa
µ'

� (3.13)

we have one more unknown tensor (T a)↵� . We can think of (T a)↵� as the generator of

some real representation (' is real since F 2 is real), thus it is antisymmetric in its last two

indices.

Since C↵ab, d↵�� , (T a)↵� are covariant tensors of a Lie algebra they must transform

correctly under infinitesimal group rotations. This implies that they satisfy the relations

(T a)↵�(T b)�� � (T b)↵�(T a)�� = ifabc(T c)↵� , (3.14)

f baeC↵ec + f caeC↵be = i(T a)↵�C�bc , (3.15)

(T a)↵�d��� + (T a)��d↵�� + (T a)��d↵�� = 0 . (3.16)

We can now constrain the unknown parameters and tensors by a careful analysis of

the tree amplitudes of the dimension-six Lagrangian. Given that we want to constrain the
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unknown Clebsh-Gordan coeff:             , (symmetric)

4pt BCJ relation à

Assume: diagrams with internal scalars reduce to

Lagrangian using the BCJ relations for adjoint fields, we need to look at amplitudes that

have only external gluons. From inspecting the Feynman diagrams this implies that the

C↵ab, (T a)↵� and d↵�� tensors are first available in the four-, five- and six-point amplitudes,

respectively.1 Indeed, the rule of thumb is that each free ↵,�, � index needs to be soaked up

by a pair of gluons before we can study the tensors. From this point of view we can think

of C↵ab as a Clebsch-Gordan coe�cient for some auxiliary “bi-adjoint” representation. In

the same sense it might be meaningful to think of '↵ as an auxiliary field even though it

is propagating.

In the four-gluon amplitude we find contractions of the type C↵abC↵cd that corresponds

to an internal scalar. Since we know that these contributions are needed to cancel some

pieces of the pure-gluon diagrams, we can assume that this contraction must equal to a tree-

level rank-four adjoint tensor. There are exactly two independent such tensors: facef ebd

and (c $ d). The relative coe�cient is uniquely fixed by the symmetries of the C↵cd tensor,

and the overall coe�cient can be absorbed into the free parameter ⇢ in the Lagrangian.

This fixes the relation

C↵abC↵cd = facef edb + fadef ecb . (3.17)

Using this relation all four-gluon amplitudes in the Lagrangian (3.12) can be computed on

a color-ordered form. In particular, the (��++) amplitude that we looked at before now

takes the form

A(1�, 2�, 3+, 4+) =
i

8
g2

h1 2i2
h3 4i2

�
⇢2(u� t)� �2s

�
(3.18)

The spinor prefactor is symmetric under 1 $ 2 interchange so only the expression in the

parenthesis need to be plugged into the BCJ relation, giving the constraint

0 = t
�
⇢2(u� t)� �2s

�� (t $ u) = s(t� u)(⇢2 � �2) (3.19)

Thus we conclude that � = ±⇢. The ambiguity in the sign reflect the fact that the

redefinition '↵ ! �'↵ in the Lagrangian does not change the value of any pure-gluon

amplitude. Without loss of generality we can choose � = �⇢, which is more convenient.

The (��++) and (�+�+) four-gluon amplitudes are now as follows

A(1�, 2�, 3+, 4+) =
i

4
⇢2g2u

h1 2i2
h3 4i2 ,

A(1�, 2+, 3�, 4+) =
i

4
⇢2g2u

h1 3i2
h2 4i2 . (3.20)

Because we have the F 3 operator in the Lagrangian, we also have nonvanishing am-

plitudes in other helicity sectors. The all-plus amplitude and one-minus amplitude are as

1Note that the (DF )2 and F 3 operators contains quartic, quintic and sextic interactions that are needed

for restoring gauge invariance of the linearized operators. The fact that the C↵ab, (T a)↵� and d↵�� tensors

show up at the same orders is suggestive of that they also cancel something unwanted in the (DF )2 and

F 3 terms.
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6pt BCJ relation à

3.1 The Dimension-Six Lagrangian

Let us summarize what we achieved: imposing color-kinematics duality (BCJ relations) up

to six points gives a unique Lagrangian for the dimension-six theory. It reads

L =
1

2
(DµF

aµ⌫)2 � 1

3
gF 3 +

1

2
(Dµ'

↵)2 +
1

2
g C↵ab'↵F a

µ⌫F
b µ⌫ +

1

3!
g d↵��'↵'�'� (3.30)

where F 3 and the covariant derivatives are defined in eqs. (3.1) and (3.13). The scalar '↵

transforms in a real (auxilliary) representation of the gauge group, with generator (T a)↵�

and symmetric Clebsh-Gordan coe�cients C↵ab and d↵�� , which are only implicitly defined

through the two relations

C↵abC↵cd = facef edb + fadef ecb ,

C↵abd↵�� = (T a)�↵(T b)↵� + C�acC�cb + (a $ b) , (3.31)

where the last equation is (non-trivially) equivalent to the tensor reduction in eq. (3.25).

Furthermore, all the group-theory tensors transforms covariantly under infinitesimal group

rotations, implying that they satisfy the three relations in eqs. (3.14)–(3.16). These five

tensor relations are su�cient to reduce any color structure appearing in a pure-gluon tree

amplitude to contractions of fabc tensors.

We have computed the tree-level pure-gluon amplitudes up to multiplicity eight, and

found that no additional corrections to the Lagrangian are needed for it to satisfy color-

kinematics duality.

4 Conformal (Weyl)

2
gravity

The theory we

4.1 Conformal supergravity

5 Explicit Amplitudes for (DF )2 and CG

Gluon amplitudes in a gauge theory are color decomposed as

An = gn�2
X

�2Sn/Zn

A(�(1),�(2), . . . ,�(n)) Tr(T a�(1)T a�(2) · · ·T a�(n)) , (5.1)

where the A(�(1),�(2), . . . ,�(n)) are color-ordered primitive amplitudes.

As a reference, we here give the MHV gluon amplitudes in Yang-Mills theory,

AYM(1+, 2+, . . . , i�, . . . , j�, . . . , n+) = i
hi ji4

h1 2i h2 3i · · · hn 1i , (5.2)

and in N = 4 super-Yang-Mills theory the MHV superamplitude is

ASYM(1, 2, . . . , n) = i
�(8)(Q)

h1 2i h2 3i · · · hn 1i , (5.3)

where the supermomenta are Q↵A =
Pn

i=1 �
↵
i ⌘

A
i .
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sufficient to compute any tree amplitude with external vectors!  

Which representation for scalar ?  “Bi-adjoint”, “auxiliary” rep. 

HJ, Nohle



Construction works!

Color-kinematics duality checked up to 8 pts ! 
(no new Feynman vertices beyond 6pt)

Double copy with YM agrees with conformal gravity: (Berkovits, Witten)

All-plus amplitude is non-zero à no susy extension of 

Supersymmetry of conformal supergravity sits on the YM side:

HJ, Nohle



Generalizations and deformations
Curiously no interacting scalars are obtained from dimensional reduction

Instead add regular scalars in adjoint…

color-kinematics fixes interactions

Double copy: Maxwell-Weyl gravity:

Bi-adjoint

Double copy: Yang-Mills-Weyl

N=4 case: Witten’s twistor string!

finally, deform with dim-4 operators: à Yang-Mills-Einstein-Weyl gravity

à

HJ, Nohle



Summary

Powerful framework for constructing scattering amplitudes in various 
gravitational theories – well suited for multi-loop UV calculations

Color-kinematics duality and gauge symmetry underlies consistency of 
construction. (Kinematic Lie algebra ubiquitous in gauge theory.)

Constructed new dim-6 theory using color-kinematics duality - theory has 
several unusual features.

First construction of conformal gravity as a double copy – may simplify 
analysis of any unresolved questions regarding unitarity of theory. 

Checks: Explicitly up to 8pts tree level (loop level analysis remains…)

An increasing number of gravitational theories exhibit double-copy 
structure (some in surprising ways) – more are likely to be found!
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