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The Gross-Neveu Model
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In 2 dimensions it has some similarities with
the 4-dimensional QCD.

It is asymptotically free and exhibits dynamical
mass generation.

Similar physics in the 2-d O(N) non-linear
sigma model with N>2.

In dimensions slightly above 2 both the O(N)

and GN models have weakly coupled UV fixed
points.



2+ € expansion

The beta function and fixed- pomt coupllng are
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N = N;trl = 4N, is the number of 2-component
Majorana fermions.

Can develop 2+¢ expansions for operator scaling
dimenSionS, €.8. Gracey; Kivel, Stepanenko, Vasiliev
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Similar expansions in the O(N) sigma model with N>2.

Brezin, Zinn-Justin



4-¢ expansion

 The O(N) sigma model is in the same
universality class as the O(N) model:
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* |t has a weakly coupled Wilson-Fisher IR fixed
noint in 4-¢ dimensions.

e Using the two € expansions, the scalar CFTs
with various N may be studied in the range
2<d<4. This is an excellent practical tool for
CFTs in d=3.



The Gross-Neveu-Yukawa Model

* The GNY model is the UV completion of the

GN mOdel in d<4 Zinn-Justin; Hasenfratz, Hasenfratz, Jansen, Kuti,

Shen
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* |R stable fixed point in 4-€ dimensions
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e Operator scaling dimensions
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* Using the two € expansions, we can study the
Gross-Neveu CFTs in the range 2<d<4.

* Another interesting observable
Diab, Fei, Giombi, IK, Tarnopolsky .
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The F-theorem

How do we extend the c- and a-theorems to
odd dimensions, where there are no
anomalies?

In d=3 there are many CFTs, e.g. Wilson-Fisher,
Gross-Neveu, Nambu-Jona-Lasinio, QED.

The free energy on the 3-sphere F=-In|Zs|

In a CFT, F is a well-defined, regulator
independent quantity (there are no Weyl
invariant counter terms).

F-theorem: FIR < FUV Jafferis, IK, Pufu, Safdi



Sphere Free Energy in Continuous d

A natural quantity to consider is Giombi, Ik

e

F =sin(nd/2)log Zga = — sin(nwd/2)F
* |In odd d, this reduces to ik, pufu, safdi

d+1
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F=(=1)%F=(=1)7 log Zsa

* Inevend, -log Z has a pole in dimensional
regularization whose coefficient is the Weyl a-
anomaly. The multiplication by sin(zd/2) removes it.

* F smoothly interpolates between a-anomaly
coefficients in even and F-values” in odd d.

* Gives the universal entanglement entropy across d-2
dimensional sphere. Casini, Huerta, Myers



Free Conformal Scalar and Fermion
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Sphere Free Energy for the O(N) Model

* At the Wilson-Fisher fixed point it is necessary to include
the curvature terms in the Lagrangian
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* The 4-¢ expansion then gives
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 The 2+¢ expansion in the O(N) sigma model is plagued by

IR divergences. It has not been developed yet, but we

know the value in d=2 and can use it in the Pade
extrapolations.



Sphere Free Energy for the GN CFT

* The 4-¢ expansion
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* The 2+¢ expansion is under good control; no
IR divergences:
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* |tis a pleasure to Pade.
* Once again,

Fuv > FIg




Summary for the 3-d GN CFTs

N 3 4 5 6 8 20 100
Ay (Pade[4:2]) 1.066 | 1.048 | 1.037 | 1.029 | 1.021 | 1.007 | 1.0013
A, (Pade[4,2]) 0.688 | 0.753 | 0.798 | 0.829 | 0.87 | 0.946 | 0.989
AR (Pade[1,5]) 2.285 | 2.148 | 2.099 | 2.075 | 2.052 | 2.025 | 2.008
F/(NFy) (Padeyy) | 1.091 | 1.060 | 1.044 | 1.034 | 1.024 | 1.008 | 1.0014
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Emergent Global Symmetries

Renormalization Group flow can lead to IR fixed
points with enhanced symmetry.

The minimal 3-d Yukawa theory for one Majorana
fermion and one real pseudo-scalar was
conjectured to have “emergent supersymmetry.”

Scott Thomas, unpublished seminar at KITP.

The fermion mass is forbidden by the time
reversal symmetry.

After tuning the pseudo-scalar mass to zero, the
theory is conjectured to flow to a /N=1
supersymmetric 3-d CFT.



Superconformal Theory

The UV lagrangian may be taken as
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Has cubic superpotent|a| W ~ AY? in terms of the
superfield s =5 +9y+ Logy

Some evidence for its existence from the
conformal bootstrap (but requires tuning of some

ope rator dimenSiOnS). lliesiu, Kos, Poland, Pufu, Simmons-Duffin,
Yacoby; Bashkirov

Condensed matter realization has been
proposed: emergent SUSY may arise at the

boundary of a topological superconductor. srover,
Sheng, Vishwanath



The Minimal Case: N=1

For a single Majorana doublet the GN quartic
interaction vanishes. Cannot use the 2+¢
expansion to describe an interacting CFT.

We have developed the 4-¢ expansion by

continuing the GNY model to N=1.
VNZ 132N +36 equals 13.
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GNY model with N=1

Consistent with the emergent SUSY relation!

39f = gy = 3\°




More Evidence of SUSY for N=1

B 3 1, ;
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Consistent with the SUSY relation
1
Apz = Ay +5 =48, +1

We conjecture that it holds exactly for d< 4.

Would be nice to test at higher orders in €. This
requires doing Yukawa theory at 3 loops and beyond.

Pade to d=3 gives A~ 0.588 which seems close to the
bootstrap result. lliesiu, Kos, Poland, Pufu, Simmons-Duffin, Yacoby



Continuation to d=2
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* Gives an interacting
superconformal theory.

* Likely the tri-critical Ising
model with c=7/10.

* Pade extrapolation gives

A, ~0217 , close to dimension |
1/5 of the energy operator : ; Lo
in the (4,5) minimal model.

* Pade also gives F/r ~o068
close to ¢c=0.7.




Higher Spin AdS/CFT

* When N is large, the O(N) and GN models
have an infinite number of higher spin

currents whose anomalous dimensions are of
order 1/N.

* Their singlet sectors have been conjectured to
be dual to the Vasiliev interacting higher-spin
theories in d+1 dimensional AdS space.

* One passes from the dual of the free to that of
the interacting large N theory by changing
boundary conditions at AdS infinity. ik, polyakov;

Leigh, Petkou; Sezgin, Sundel; for a recent review, see Giombi’s TASI lectures



1/N Expansion for the O(N) Model

* Generated using the Hubbard-Stratonovich
auxiliary field

S = /ddx (%(5@5)9 + %g;@i‘@i - g)
* |n 2<d<4 the quadratic term is negligible in the IR.
* Induced propagator for the auxiliary field




* The 1/N corrections to operator dimensions

are calculated using this induced propagator.

For example, ; | .
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For the leading correction need
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* When the leading correction is negative, the
arge N theory is non-unitary.

* |tis positive not only for 2<d< 4,

n

out also for 4<d<6.

* The 2-point function
coefficient ¢, is similar




Towards Interacting 5-d O(N) Model

Scalar large N model with 3(¢¢)? interaction has
a good UV fixed point for 4<d<6. parisi

In 1+ c.dimensions  s=a+ i

O

So, the UV fixed point is at a negative coupling
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At large N, conjectured to be dual to Vasiliev
theory in AdS, with A_ boundary condition on
the bulk scalar. ciombi, ik, safdi

Check of 5-dimensional F-theorem —F=10z2s
3¢(5) + 72¢(3)
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Perturbative IR Fixed Points

e Workin d=6-¢ with O(N) symmetric cubic

scalar theory .- é{amﬂ \ %@g)ﬂ + Lo(dia) + 2o

e The beta functions rei Giombi, i

g, = 9 (N —8)gi — 124792 + 9195
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* Forlarge N, the IR stable fixed point is at real
couplings

g2« = 6g1.




RG Flows:

* Here is the flow pattern for
N=2000

* The IR stable fixed points go
off to complex couplings for
N < 1039. Large N expansion
breaks down very early!




. . . . € Ngl+g
* The dimension of sigmais 2 =2-5+ HEn

* At the IR fixed point thisis 2+

* Agrees with the large N result for the
O(N) model in d dimensions:

Petkou (1995) oy X ['(d)
“TNT(d/2—1)T(1—d/2)T(d/2)T(d/2 + 1)

* For N=0, the fixed point at imaginary coupling
may lead to a description of the Lee-Yang edge
singularity in the Ising model. wichael Fisher (1978)

* For N=0, 2, is below the unitarity bound 2-

 For N>1039, the fixed point at real couplings is
consistent with unitarityin 4—6—«

€
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Three Loop Analysis

The beta functions are found to be
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* The epsilon expansions of scaling dimensions agree in
detail with the large N expansion at the UV fixed point
of the quartic O(N) model:

d
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* Continues to work at four loop order. Gracey



Critical N

* What is the critical value of N below which

the perturbatively unitary fixed point
disappears?

* Need to find the solution of

3 =0, 3y = 0,

* This gives

Nerie = 1038.266 — 600.840€ — 364.173€% + O(€?)



(Meta) Stability

* Since the UV lagrangian is cubic, does the theory
make sense non-perturbatively?

* When the CFT is studied on s or kxs?'the
conformal coupling of scalar fields to curvature
renders the perturbative vacuum meta-stable. In
6-¢ dimensions, scaling dimensions may have
imaginary parts of order exp (- A N/g)

* Metastability of the 5-d O(N) model also
suggested by applications of Exact RG.

Mati; Eichhorn, Janssen, Scherer; Kamikado, Kanazawa



Conformal Bootstrap in 5-d

e Recent results using mixed correlators in the
O(500) model show good agreement with the

1/N eXpanSion . Z.Li, N. Su; see also S. Chester, S. Pufu, R. Yacoby

N L 3, 0206152 4342 121673 -
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+
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* The shrinking island similar |
that seen for O(N) in d=3.

F. Kos, D. Simmons-Duffin, D. Poland, A. Vichi




Conclusions

* The g-expansions in the O(N), Gross-Neveu,
Nambu-Jona-Lasinio, and other vectorial CFTs, are
useful for applications to condensed matter and
statistical physics.

* They provide “checks and balances” for the new
numerical results using the conformal bootstrap.

* They serve as nice playgrounds for the RG
inequalities (C-theorem, a-theorem, F-theorem)
and for the higher spin AdS/CFT and dS/CFT

correspondence.



Some small values of N are special cases
where there are enhanced IR symmetries.

Yukawa CFTs in d<4 can exhibit emergent
supersymmetry.

Found a new description of the meta-stable
fixed points of the scalar O(N) model in 4<d<6
valid for sufficiently large N.

Interesting results about the 5-d O(N) model
using the conformal bootstrap, Exact RG.

Could the phase transition in 5-d be very
weakly first order for large N?



